Numerical investigation of wave interactions in an experimental wave-energy converter using OpenFOAM

Author(s):  
Ali Sangtarash ◽  
Ehsan Roohi

In this paper, OpenFOAM wave generation and active wave absorption boundary conditions were used to simulate wave interaction of a specific experimental wave energy converter (WEC) with equilibrium buoys and two power take-off systems that work in parallel, over a broad range of wave conditions. Two solitary and cnoidal wave generation boundary conditions for three different wave heights were implemented at the inlet to generate waves. The validation phase included a comparison of free-surface with numerical results of solitary and cnoidal waves generation at the flume. To investigate the impact of equilibrium buoys, wave flow around the wave energy converter was simulated for two cases. In the first case, WEC was considered as a single box, and in the second, two equilibrium buoys were added to the WEC. By comparison of these two cases, we discovered that although equilibrium buoys decrease the horizontal force on the main box, they cause the production of two efficient vertical forces. One of these forces moves the front equilibrium buoy generating electricity individually from the main box mechanism, and the other vertical force is applied to the back equilibrium buoy accelerating the rotation of the main box. Overall, wave energy absorption is enhanced by using the equilibrium buoys.

2021 ◽  
Vol 222 ◽  
pp. 108619
Author(s):  
Milad Zabihi ◽  
Said Mazaheri ◽  
Masoud Montazeri Namin ◽  
Ahmad Rezaee Mazyak

Author(s):  
Frances M. Judge ◽  
Eoin Lyden ◽  
Michael O'Shea ◽  
Brian Flannery ◽  
Jimmy Murphy

Abstract This research presents a methodology for carrying out uncertainty analysis on measurements made during wave basin testing of an oscillating water column wave energy converter. Values are determined for Type A and Type B uncertainty for each parameter of interest, and uncertainty is propagated using the Monte Carlo method to obtain an overall Expanded Uncertainty with a 95% confidence level associated with the Capture Width Ratio of the device. An analysis into the impact of reflections on the experimental results reveals the importance of identifying the incident and combined wave field at each measurement location used to determine device performance, in order to avoid misleading results.


2018 ◽  
Vol 161 ◽  
pp. 322-336 ◽  
Author(s):  
Annika O'Dea ◽  
Merrick C. Haller ◽  
H. Tuba Özkan-Haller

2016 ◽  
Author(s):  
Anna Büchner ◽  
Thomas Knapp ◽  
Martin Bednarz ◽  
Philipp Sinn ◽  
Arndt Hildebrandt

The commercial CFD code ANSYS Fluent is used for the three-dimensional estimation of wave loads and the dynamic response of a floating single point wave energy converter of the SINN Power wave power plant due to non-breaking and unidirectional waves in coastal waters. The VoF method is used to model the free surface and wave theories to set up the boundary conditions at the inlet for regular waves. The wave induced vertical motions of the floating module are computed by a sixDoF solver. Preliminary 2D and 3D studies to set up boundary conditions, mesh densities and solver settings were performed. The numerical results were compared to analytical solutions in form of water surface elevations and wave kinematics which showed good agreement. The paper presents the dynamic response of the floating module for different load cases in terms of non-breaking waves. The resulting horizontal and vertical forces at the floating module will be presented and explained by the flow dynamics. Time and space depending velocities and pressure distributions including details on vortex separation will be given, which reveal valuable insights on the contribution of inertia and drag forces leading to the dynamic structural response of the floating devices.


Author(s):  
Junxian Wang ◽  
Shiqiang Yan ◽  
Qingwei Ma ◽  
Jinghua Wang ◽  
Zhihua Xie ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
pp. 1-16
Author(s):  
Muhammad Satriawan ◽  
L Liliasari ◽  
Wawan Setiawan ◽  
Ade Gafar Abdullah

This paper aims to review the potential of wave energy in several countries, the wave energy converter technology that has been developed, and the impact of the installation of wave energy converter technology devices on the environment. In addition, it discusses the theoretical formulations and challenges in the development of energy converter technology in the future. Based on the detail analysis, the potential of ocean wave energy for alternative energy is very large but cannot be used optimally because the technology of wave energy converter that has been developed is still on a prototype scale. In addition, the impact of the use of ocean wave converters on the environment is insignificant compared with conventional energy. Finally, this study informs and recommends the government and the private sector to start investing in the ocean wave energy industry optimally in order to achieve a sustainable future.


Author(s):  
O. Danielsson ◽  
M. Leijon ◽  
K. Thorburn ◽  
M. Eriksson ◽  
H. Bernhoff

A novel wave energy converter concept is developed at Uppsala University, Department of Engineering Science. The concept is based on a synchronous permanent magnet linear generator, placed on the seabed. The piston of the generator is directly connected to a surface-floating buoy with a rope. The tension in the rope is maintained with springs that pull the piston downward. The three-phase current induced in the stator coil has a varying amplitude and frequency and a conversion is therefore necessary. Research has been carried out in three main areas: generator design, dynamic behavior and grid connection. The generator is modeled by full physics numeric simulations, based on a 2-dimensional finite element formulation of the time dependent electromagnetic field. A first set up is built to experimentally verify the simulated results. The impact of different parameters are estimated with mathematical models and verified by experiments. This paper includes both simulated and experimental results.


Author(s):  
Tomoki Taniguchi ◽  
Jun Umeda ◽  
Toshifumi Fujiwara ◽  
Hiroki Goto ◽  
Shunji Inoue

This paper addresses experimental and numerical validation of power output efficiency about an approximate complex-conjugate control with considering the copper loss (ACL) method. A bottom-fixed point absorber type wave energy convertor (WEC) model was used for the experiments carried out at National Maritime Research Institute, Japan (NMRI). In order to model a power take-off (PTO) system constructed by a permanent magnet linear generator (PMLG), a liner shaft motor (LSM) was used for the model test. To investigate characteristics of the ACL method, the resistive load control (RLC) method and approximate complex-conjugate control (ACC) method were also tested by the WEC model. A simulation code based on WEC-Sim (Wave Energy Converter SIMulator) v2.0 written by MATLAB/Simulink, which is developed by collaboration works between the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories (Sandia), was used for the validation. The simulated results in regular waves have good agreement with measured ones in terms of the float heave motion, the vertical force and the control input force. Through the experiments and numerical simulations in regular waves, the ACL method has advantages in high power production compared with the RLC and the ACC methods for the WEC model. In addition, the power output characteristics of the ACL method in irregular waves were checked experimentally and numerically.


Sign in / Sign up

Export Citation Format

Share Document