Energy conservation potential in highway illumination system: A Techno-Enviro-Economic study on retrofitting HPS with LED luminaires

2021 ◽  
pp. 0958305X2110204
Author(s):  
Tallal Ahmed ◽  
Waqas Khalid ◽  
Adeela Aslam

Adequate and appropriate illumination across the highway isessential for safety. High-pressure sodium luminaires (HPS) are usually standard throughout Pakistan. However, with the advancements in illumination technologies and growing trend of energy efficiency, retrofitting of conventional HPS luminaires with light-emitting diode luminaires (LEDs) is becoming popular. Low energy consumption, high color rendering index (CRI), longer life span, and variety in correlated color temperature (CCT) make LED luminaires ideal for replacing inefficient HPS lights. The retrofitting of HPS with LED illumination system comes with a capital cost, and its feasibility depends on the energy conservation potential. This study presents a case of 4,014 HPS luminaires installed across an 85 km long highway in second highly populated city of Pakistan. A targeted energy audit of HPS illumination system was conducted and compared with the proposed LED system of equivalent illumination quality. The results indicate that by retrofitting the HPS luminaires, the energy consumption can be reduced by 60% and with 83.3% reduction in the apparent power. Furthermore, the proposed LED illumination system will significantly improve the power quality, light noise, energy losses, carbon footprint, and operational cost.

2019 ◽  
Vol 290 ◽  
pp. 183-189
Author(s):  
Mahmood Al Shafouri ◽  
Naser Mahmoud Ahmed ◽  
Zainuriah Hassan ◽  
Munirah Abdullah Almessiere

In thus study, Turmeric phosphor dye was extracted from Curcuma Longa L. via a simple technique using silica gel. The phosphor was used for light down-conversion of UV light for the manufacture white light emitting diode (WLED). The UV-LED was analyzed over 395nm wavelengths. The characteristics of the white light chromaticity were controlled by tuning the current and phosphor concentration. An optimum color rendering index (CRI) value of 63.4 was obtained. The chromaticity coordinates (CIE) and correlated color temperature (CCT) were measured for various currents and phosphor concentrations. The white phosphor exhibited CIE value of 0.355,0.338 and CCT of 4567 K. The concentration of phosphor and amount of applied current were confirmed to be major factors that control the intensity of white light emitted from the sample, where CIE and CRI of the emitted light steadily increased with the concentration of phosphor and current. Thus, phosphor concentration has a critical effect on conversion efficiency. Key words: Turmeric, phosphor, WLED, curcumin


Nanophotonics ◽  
2016 ◽  
Vol 5 (4) ◽  
pp. 565-572 ◽  
Author(s):  
Wei Chen ◽  
Kai Wang ◽  
Junjie Hao ◽  
Dan Wu ◽  
Jing Qin ◽  
...  

AbstractIn this research, we have developed an approach by incorporating quantum dots (QDs) with red emission into mesoporous silica microspheres through a non-chemical process and obtained luminescent microspheres (LMS). Owing to the lattice structure of LMS, QDs were effectively protected from intrinsic aggregation in matrix and surface deterioration by encapsulant, oxygen and moisture. The LMS composite has therefore maintained large extent luminescent properties of QDs, espe-cially for the high quantum efficiency. Moreover, the fabricated white light emitting diode (WLED) utilizing LMS and YAG:Ce yellow phosphor has demonstrated excellent light performance with color coordinates around (x = 0.33, y = 0.33), correlated color temperature between 5100 and 5500 K and color rendering index of Ra = 90, R9 = 95. The luminous efficiency of the WLED has reached up to a new record of 142.5 lm/W at 20 mA. LMS provide a promising way to practically apply QDs in lightings and displays with high efficiency as well as high stability.


2020 ◽  
Vol 301 ◽  
pp. 77-84
Author(s):  
M. Al Shafouri ◽  
Naser Mahmoud Ahmed ◽  
Zainuriah Hassan ◽  
Munirah Abdullah Almessiere

In this study, the chromaticity properties of curcuminoids nanofibers were studied. Recent studies revealed that the nature of emitted light from curcuminoids and the poor stability which limits their illumination applications can be further improved using nanofibers and nanoparticles of curcuminoids. Motivated by this idea, we prepared some Poly(methyl methacrylate) (PMMA) integrated curcuminoids nanofibers via electrospinning. Poly(methyl methacrylate) (PMMA) were used in three types of concentration (5,10 and15wt%) which were mixed with (curcuma longa L.) powder to produce curcuminoids solution by using the centrifuge to separate the curcuminoids solution from the impurities. Different amounts of polymer solution mixed with curcuminoids (1 to 5ml) were spun by electrospinning to study its properties. The effect of annealing on samples was studied. The chromatic study of the samples and the effect of the amount and concentration of the solution were studied by pumping the samples in three different light emitting diode (LED) wavelengths (365, 390 and 445nm). The white light chromaticity coordinates (CIE), correlated color temperature (CCT) and color rendering index (CRI) were measured. The optimum CIE, CRI and CCT values of (X= 0.3051; Y= 0.3370), 64 and 6809K, respectively were obtained. By using field emission scanning electron microscope (FESEM) device, the curcuminoids nanofibers diameter was measured, where the values obtained ranged between 191 to 234nm. After the annealing process, curcuminoids nanoparticles average diameter 13-19 nm were obtained.


Author(s):  
Xin Liu ◽  
Xinglu Qian ◽  
Peng Zheng ◽  
Xiaopu Chen ◽  
Yagang Feng ◽  
...  

AbstractA three-layered phosphor structure was designed and prepared by the spin coating of BaSi2N2O2:Eu (cyan-emitting) and (Sr,Ca)AlSiN3:Eu (red-emitting) phosphor films on the yellow-emitting Y3Al5O12:Ce (YAG:Ce) phosphor ceramic synthesized by the solid-state reaction under vacuum sintering. In order to achieve high color rendering lighting, the influence of the composition and structure of the three-layered phosphors on the optical, thermal, and electrical properties of the chip-on-board (COB) packaged white-light-emitting diodes (WLEDs) was studied systematically. The WLED with the structure of “red+cyan+yellow” (R+C+Y) three-layered phosphor generated neutral white light and had a luminous efficacy of 75 lm/W, the fidelity index (Rf) of 93, the gamut index (Rg) of 97, and the correlated color temperature (CCT) of 3852 K. Under the excitation of laser diode (LD), the layer-structured phosphor yielded the white light with a luminous efficacy of 120 lm/W, color rendering index (CRI) of 90, and CCT of 5988 K. The result indicates that the three-layered phosphor structure is a promising candidate to achieve high color rendering and high luminous efficacy lighting.


2021 ◽  
Vol 11 (18) ◽  
pp. 8313
Author(s):  
Sujung Lee ◽  
Heakyung C. Yoon

In this study, two experiments were conducted to investigate the effects of the color rendering index (CRI) and correlated color temperature (CCT) of light-emitting diode (LED) lighting on office user acceptance and to explore the proper color attributes for human-centric office lighting. Experiment 1 had four LED lights, with two levels for the CRI (CRI < 80: 79, 76; or CRI ≥ 80: 83, 84) and CCT (3000 K or 6500 K) at 300 lux. In experiment 2, there were four LED lights, with several levels for the CRI (CRI < 80: 78; or CRI ≥ 80: 87, 83) and CCT (3000 K or 6500 K) at 500 lux. Ninety-six participants in experiment 1 and ninety-four participants in experiment 2 performed a reading task. The results in experiment 1 and experiment 2 showed that LEDs with lower CRI values at warm color temperatures were rated as more acceptable than LEDs with higher CRI values at warm color temperatures. However, the positive effect extended to LEDs with higher CRI values at cool temperatures but not to LEDs with lower CRI values at cool temperatures. Therefore, the findings are that LEDs with lower CRI values at warm color temperatures and LEDs with higher CRI values at cool temperatures provide the right level of color attributes for office lighting.


2020 ◽  
Vol 11 (1) ◽  
pp. 74
Author(s):  
Jeungmo Kang ◽  
Yoonhee Cho ◽  
Woojin Jang

Organic light-emitting diode is one of the future-proof solid-state-based lighting sources. OLED shows great aesthetic advantages and good color quality without glare. Moreover OLED is a kind of surface light sources naturally. There are some studies on the long-term reliability characteristics of OLED light source. However, these studies focused on the light output degradation of OLED light sources mainly. In this paper, we have investigated the long-term reliability characteristics of OLED panel and luminaires in terms of lumen maintenance, correlated color temperature, color rendering index, and operating voltage. Total twelve OLED panels with four different kinds and six OLED luminaires with two different kinds were analyzed up to six thousand hours and analyzed for the general lighting applications.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 239
Author(s):  
Chin-Chuan Huang ◽  
Tsung-Han Weng ◽  
Chun-Liang Lin ◽  
Yan-Kuin Su

White-light-emitting diodes (WLED) based on yttrium aluminum garnet (YAG) phosphors sintered with glass (PiG) and with silicone (PiS) are compared in terms of their light properties, temperature properties and reliability.The complete YAG phosphor was doped with an encapsulant traditional WLED (PiS WLED), and the WLED was covered with PiG (PiG WLED). PiG was made by sintering glass powder and YAG phosphor at the ratio of 87:13 (%), and the correlated color temperature (CCT) was 5564 K. The CCT of the PiG WLED with the YAG doping concentration of 8.5 wt.% approximated 5649 K. The initial light output of the PiG WLED was 6.4% lower than that of the PiS WLED. Under 1008 h and 350 mA aging, PiG WLED and PiS WLED’ light output, CCT and color rendering index variation rates were all within 1%. In the saturated vapor-pressure test, no sample exhibited red ink infiltration, light nor peeling between the encapsulant and the lead-frame. Compared with that of the PiS WLED, the junction temperature of the PiG WLED reduced from 88.4 °C to 81.3 °C. Thermal resistance dropped from 37.4 °C/W to 35.6 °C/W. The PiG WLED presented a better CIE (Commission Internationale de l’Eclairage) 1931 chromaticity coordinate (x,y) concentration and thermal properties than the PiS WLED.


Sign in / Sign up

Export Citation Format

Share Document