A nonlinear observer-based adaptive robust control approach for a class of uncertain asymmetric hysteretic systems

Author(s):  
Yangming Zhang ◽  
Lingyun Xue ◽  
Biao Luo

This article presents a robust control scheme for a class of asymmetric hysteretic systems with both parametric uncertainties and external disturbances, where an asymmetric Bouc–Wen model is adopted to represent the hysteretic behavior. A novel adaptive non-singular terminal sliding mode control methodology with hysteretic state estimation is proposed to achieve finite-time stabilization of such systems for vibration suppressions. In the proposed control framework, a hysteresis observer is constructed to capture the unmeasurable hysteretic force, and the adaptive control technique is used to accommodate the hysteretic uncertainties and unknown system parameters. Moreover, a fast terminal sliding mode controller without the singularity problem is designed to improve the robustness and dynamic performance of such systems, where the terminal sliding mode function is proposed to guarantee the finite-time convergence of the system states, and the reaching law with fractional power is constructed to accelerate the occurrence of the corresponding terminal sliding mode surface. Meanwhile, the finite-time stability of the whole closed-loop system is also analyzed. Finally, numerical simulation results deployed on a magnetorheological elastomer vibration isolation system are provided to validate the effectiveness of the proposed control algorithm.

2018 ◽  
Vol 41 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Junhong Song ◽  
Shenmin Song

In this paper, for the three-dimensional terminal guidance problem of a missile intercepting a manoeuvring target, a robust continuous guidance law with impact angle constraints in the presence of both an acceleration saturation constraint and a second-order-lag autopilot is developed. First, based on non-singular fast terminal sliding mode and adaptive control, a step-by-step backstepping method is used to design the guidance law. In the process of guidance law design, with the use of a finite-time control technique, virtual control laws are developed, a tracking differentiator is used to eliminate the ‘explosion of complexity’ problem inherent in the traditional backstepping method, and an additional system is constructed to deal with the acceleration saturation problem; its states are used for guidance law design and stability analysis. Moreover, the target acceleration is considered bounded disturbance, but the upper bound is not required to be known in advance, whereas the upper bound is estimated online by a designed adaptive law. Next, finite-time stability of the guidance system is strictly proved by using a Lyapunov method. Finally, numerical simulations are presented to demonstrate the excellent guidance performances of the proposed guidance law in terms of accuracy and efficiency.


Author(s):  
Ali Abooee ◽  
Mohammad Hayeri Mehrizi ◽  
Mohammad Mehdi Arefi ◽  
Shen Yin

This paper deals with the finite-time trajectory tracking problem for a typical 3-DOF (degree of freedom) autonomous surface vehicle (ASV) subjected to parametric uncertainties and environmental disturbances. Based on the nonsingular terminal sliding mode control (NTSMC) method, several separate classes of robust control inputs are designed to exactly steer all position states of the 3-DOF AVS to the desired paths during alterable finite times. By exploiting the Lyapunov stability theorem and using mathematical analysis, it is proven that all classes of designed robust control inputs are able to fulfill the mentioned finite-time tracking aim. Moreover, three applicable formulas (represented as several nonlinear inequalities) are extracted to determine the required total finite times for the suggested control schemes. Lastly, all designed control methods are numerically tested onto a benchmark 3-DOF AVS called CyberShip II. Provided computer-based numerical simulations (using MATLAB software) depicted the acceptable performance of the proposed control techniques.


2016 ◽  
Vol 23 (2) ◽  
pp. 181-189 ◽  
Author(s):  
Saleh Mobayen ◽  
Shamsi Javadi

This paper proposes a novel recursive terminal sliding mode structure for tracking control of third-order chained–form nonholonomic systems in the presence of the unknown external disturbances. Finite-time convergence of the disturbance approximation error is guaranteed using the designed disturbance observer. Under the proposed terminal sliding model tracking control technique, the finite-time convergence of the states of the closed-loop system is guaranteed via Lyapunov analysis. A new reaching control law is proposed to guarantee the existence of the sliding mode around the recursive TSM surface in a finite-time. Simulation results are illustrated on a benchmark example of third-order chained-form nonholonomic systems: a wheeled mobile robot. The results demonstrate that the proposed control technique achieves promising tracking performance for nonholonomic systems.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0249705
Author(s):  
Zain Ahmad Khan ◽  
Laiq Khan ◽  
Saghir Ahmad ◽  
Sidra Mumtaz ◽  
Muhammad Jafar ◽  
...  

The energy demand in the world has increased rapidly in the last few decades. This demand is arising the need for alternative energy resources. Solar energy is the most eminent energy resource which is completely free from pollution and fuel. However, the problem occurs when it comes to efficiency under different atmospheric conditions such as varying temperature and solar irradiance. To achieve its maximum efficiency, an algorithm of maximum power point tracking (MPPT) is needed to fetch maximum power from the photovoltaic (PV) system. In this article, a nonlinear backstepping terminal sliding mode control (BTSMC) is proposed for maximum power extraction. The system is finite-time stable and its stability is validated through the Lyapunov function. A DC-DC buck-boost converter is used to deliver PV power to the load. For the proposed controller, reference voltages are generated by a radial basis function neural network (RBF NN). The proposed controller performance is tested using the MATLAB/Simulink tool. Furthermore, the controller performance is compared with the perturb and observe (P&O) MPPT algorithm, Proportional Integral Derivative (PID) controller and backstepping MPPT nonlinear controller. The results validate that the proposed controller offers better tracking and fast convergence in finite time under rapidly varying conditions of the environment.


Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 43
Author(s):  
Khalid A. Alattas ◽  
Javad Mostafaee ◽  
Abdullah K. Alanazi ◽  
Saleh Mobayen ◽  
Mai The Vu ◽  
...  

In this study, an adaptive nonsingular finite time control technique based on a barrier function terminal sliding mode controller is proposed for the robust stability of nth-order nonlinear dynamic systems with external disturbances. The barrier function adaptive terminal sliding mode control makes the convergence of tracking errors to a region near zero in the finite time. Moreover, the suggested method does not need the information of upper bounds of perturbations which are commonly applied to the sliding mode control procedure. The Lyapunov stability analysis proves that the errors converge to the determined region. Last of all, simulations and experimental results on a complex new chaotic system with a high Kaplan–Yorke dimension are provided to confirm the efficacy of the planned method. The results demonstrate that the suggested controller has a stronger tracking than the adaptive controller and the results are satisfactory with the application of the controller based on chaotic synchronization on the chaotic system.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Shuanghe Yu ◽  
Lina Jin ◽  
Kai Zheng ◽  
Jialu Du

Finite-time control scheme for speed regulation of permanent magnet synchronous motor (PMSM) is investigated under the port-controlled Hamiltonian (PCH), terminal sliding mode (TSM), and fast TSM stabilization theories. The desired equilibrium is assigned to the PCH structure model of PMSM by maximum torque per ampere (MTPA) principle, and the desired Hamiltonian function of state error is constructed in the form of fractional power structure as TSM and fast TSM, respectively. Finite-time TSM and fast TSM controllers are designed via interconnection and damping assignment passivity-based control (IDA-PBC) methodology, respectively, and the finite-time stability of the desired equilibrium point is also achieved under the PCH framework. Simulation results validate the improved performance of the presented scheme.


Sign in / Sign up

Export Citation Format

Share Document