Robust impact angle constraints guidance law with autopilot lag and acceleration saturation consideration

2018 ◽  
Vol 41 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Junhong Song ◽  
Shenmin Song

In this paper, for the three-dimensional terminal guidance problem of a missile intercepting a manoeuvring target, a robust continuous guidance law with impact angle constraints in the presence of both an acceleration saturation constraint and a second-order-lag autopilot is developed. First, based on non-singular fast terminal sliding mode and adaptive control, a step-by-step backstepping method is used to design the guidance law. In the process of guidance law design, with the use of a finite-time control technique, virtual control laws are developed, a tracking differentiator is used to eliminate the ‘explosion of complexity’ problem inherent in the traditional backstepping method, and an additional system is constructed to deal with the acceleration saturation problem; its states are used for guidance law design and stability analysis. Moreover, the target acceleration is considered bounded disturbance, but the upper bound is not required to be known in advance, whereas the upper bound is estimated online by a designed adaptive law. Next, finite-time stability of the guidance system is strictly proved by using a Lyapunov method. Finally, numerical simulations are presented to demonstrate the excellent guidance performances of the proposed guidance law in terms of accuracy and efficiency.

2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Bin Zhao ◽  
Jun Zhou

A smooth guidance law for intercepting a maneuvering target with impact angle constraints is documented based on the nonsingular fast terminal sliding mode control scheme and adaptive control scheme. Different from the traditional adaptive law which is used to estimate the unknown upper bound of the target acceleration, a new adaptive law is proposed to estimate the square of target acceleration bound, which avoids the use of the nonsmooth signum function and therefore ensures the smoothness of the guidance law. The finite time convergence of the guidance system is guaranteed based on the Lyapunov method and the finite time theory. Simulation results indicate that under the proposed guidance law the missile can intercept the target with a better accuracy at a desired impact angle in a shorter time with a completely smooth guidance command compared with the existing adaptive fast terminal sliding mode guidance laws, which shows the superiority of this method.


Author(s):  
Zhengyu Guo ◽  
Chaolei Wang ◽  
Hang Qian ◽  
Zhiguo Han ◽  
Jingxian Zhang

A distributed multi-missile cooperative guidance law based on the finite time theory is proposed to solve the terminal guidance problem of three-dimensional multi-missiles cooperative interception of large maneuvering target. According to the finite time consistency theory, an adaptive guidance law based on the integral sliding mode is designed to ensure that all missiles can reach the target at the same time in the terminal guidance process. The longitudinal and lateral acceleration of the line of sight are based on the guidance law of the fast terminal sliding mode surface. The terminal attack angle is constrained, so that the terminal attack Angle can reach the expected value in finite time. The simulation results show that the designed guidance law can achieve the cooperative attack on the maneuvering targets.


Author(s):  
Fei Ma ◽  
Yunjie Wu ◽  
Siqi Wang ◽  
Xiaofei Yang ◽  
Yueyang Hua

This paper presents an adaptive fixed-time guidance law for the three-dimensional interception guidance problem with impact angle constraints and control input saturation against a maneuvering target. First, a coupled guidance model formulated by the relative motion equation is established. On this basis, a fixed-time disturbance observer is employed to estimate the lumped disturbances. With the help of this estimation technique, the adaptive fixed-time sliding mode guidance law is designed to accomplish accurate interception. The stability of the closed-loop guidance system is proven by the Lyapunov method. Simulation results of different scenarios are executed to validate the effectiveness and superiority of the proposed guidance law.


2018 ◽  
Vol 41 (2) ◽  
pp. 321-339 ◽  
Author(s):  
Yu-Jie Si ◽  
Shen-Min Song

Three-dimensional finite-time guidance laws are proposed in this paper. Differing from the traditional approach that considers homing guidance problems as two identical and perpendicular channels, guidance laws proposed in this paper employ the coupled three-dimensional engagement dynamics to improve the guidance precision. A new reaching law is adopted to guarantee guidance laws continuous, which eliminates the chattering phenomenon caused by discontinuous terms. Moreover, the guidance law accelerates the convergence rate of closed-loop systems and avoids the singularity. Afterwards, the paper discusses the problem that the upper bound of the lumped uncertainty including the target information is unavailable. Therefore, to deal with this problem, another adaptive guidance law is presented, which can also guarantee the finite-time convergence of guidance systems. Numerical simulations have demonstrated that the two guidance laws have effective performance and outperform traditional terminal sliding mode guidance laws.


2022 ◽  
pp. 1-20
Author(s):  
G. Wu ◽  
K. Zhang ◽  
Z. Han

Abstract In order to intercept a highly manoeuvering target with an ideal impact angle in the three-dimensional space, this paper promises to probe into the problem of three-dimensional terminal guidance. With the goal of the highly target acceleration and short terminal guidance time, a guidance law, based on the advanced fast non-singular terminal sliding mode theory, is designed to quickly converge the line-of-sight (LOS) angle and the LOS angular rate within a finite time. In the design process, the target acceleration is regarded as an unknown boundary external disturbance of the guidance system, and the RBF neural network is used to estimate it. In order to improve the estimation accuracy of RBF neural network and accelerate its convergence, the parameters of RBF neural network are adjusted online in real time. At the same time, an adaptive law is designed to compensate the estimation error of the RBF neural network, which improves the convergence speed of the guidance system. Theoretical analysis demonstrates that the state and the sliding manifold of the guidance system converge in finite time. According to Lyapunov theory, the stability of the system can be guaranteed by online adjusting the parameters of RBF neural network and adaptive parameters. The numerical simulation results verify the effectiveness and superiority of the proposed guidance law.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Kuanqiao Zhang ◽  
Suochang Yang

Aiming at the requirement that some missiles need to meet certain impact angles when attacking targets, we consider the second-order dynamic characteristics of autopilot, thereby proposing a second-order sliding mode guidance law with impact angle constraint. Firstly, based on the terminal sliding mode control, we design a fast nonsingular terminal sliding mode guidance law with impact angle constraint. Based on the second-order sliding mode control, a second-order sliding mode guidance law with impact angle constraint is proposed. We have proved its finite time convergence characteristics and presented the specific convergence time expression. Subsequently, the dynamic characteristics of the autopilot are approximated to the second-order link. Combined with the dynamic surface control theory, we proposed a second-order sliding mode guidance law considering the second-order dynamic characteristics of the autopilot and proved its finite-time convergence characteristics. Finally, the effectiveness and superiority of the proposed guidance law are verified by comparative simulation experiments.


2019 ◽  
Vol 26 (11-12) ◽  
pp. 1001-1011 ◽  
Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei

This paper presents a novel technique to design a robust finite-time partial stabilizer, based on the non-singular terminal sliding mode method and a disturbance observer for the missile guidance problem. In the proposed method, the finite-time stability is desired for only a part of the state variables in the guidance system. Accordingly, the guidance system is divided into two subsystems where the finite-time stability is desired only for the first subsystem. Then, a partial diffeomorphism transformation is used to convert the first subsystem into the normal form. Finally, the components of the input vector appearing in the transformed form of the first subsystem are designed to achieve finite-time stability based on a partial disturbance observer. In the proposed finite-time disturbance observer, the disturbances are estimated in a finite time without any knowledge about their upper bounds. Simulation results demonstrate the effectiveness of the designed guidance law to intercept maneuvering and non-maneuvering targets compared to the existing methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Fang Yang ◽  
Kuanqiao Zhang ◽  
Lei Yu

A nonsingular fast terminal sliding mode guidance law with an impact angle constraint is proposed to solve the problem of missile guidance accuracy and impact angle constraint for maneuvering targets. Aiming at the singularity problem of the terminal sliding mode, a fast terminal sliding mode surface with finite-time convergence and impact angle constraint is designed based on fixed-time convergence and piecewise sliding mode theory. To weaken chattering and suppress interference, a second-order sliding mode supertwisting algorithm is improved. By designing the parameter adaptive law, an adaptive smooth supertwisting algorithm is designed. This algorithm can effectively weaken chattering without knowing the upper bound information of interference, and it converges faster. Based on the proposed adaptive supertwisting algorithm and the sliding mode surface, a guidance law with the impact angle constraint is designed. The global finite-time convergence of the guidance law is proved by constructing the Lyapunov function. The simulation results verify the effectiveness of the proposed guidance law, and compared with the existing terminal sliding mode guidance laws, the proposed guidance law has higher guidance precision and angle constraint accuracy.


Author(s):  
Shashi Ranjan Kumar ◽  
Debasish Ghose

This paper proposes three-dimensional impact angle control guidance laws based on a sliding mode control technique. Unlike the usual approach of decoupling the engagement dynamics into two mutually orthogonal two-dimensional planes, the guidance laws are derived using coupled engagement dynamics. By using this approach, the control effort required to achieve the objective reduces and the performance of the guidance law is improved. The derivations of guidance laws are done using both conventional as well as nonsingular terminal sliding mode control, which guarantees asymptotic and finite time convergence, respectively, to the desired impact angle. In order to derive the guidance laws, multi-dimensional switching surfaces are used. The stability of the system, with selected switching surfaces, is demonstrated using Lyapunov stability theory. Numerical simulation results are presented to validate the proposed guidance laws for constant speed, as well as a realistic interceptor model with given aerodynamic properties. The simulations show the advantage of using coupled dynamics. The robustness of the proposed guidance laws, with respect to the interceptor’s system lag, is also investigated.


2019 ◽  
Vol 124 (1273) ◽  
pp. 368-384
Author(s):  
F.-J. Zhao ◽  
H. You

AbstractAiming at the issue of missiles attacking on-ground maneuvering targets in three-dimensional space, a three-dimensional finite-time guidance law with impact-angle constraints is proposed. In order to improve convergence speed and restrain chattering phenomenon, the nonsingular fast terminal three-dimensional second-order sliding mode guidance law with coupling terms is designed based on the theory of nonhomogeneous fast terminal sliding surface and second-order sliding mode control. The system model need not be linearized during the design process, and the singular problem is avoided. A nonhomogeneous disturbance observer is designed to estimate and compensate the total disturbance, which is caused by target maneuvering information and coupling terms of line of sight. And the stability and finite-time convergence of the guidance law are proved strictly and mathematically. Finally, simulation results have verified the effectiveness and superiority of the proposed guidance law.


Sign in / Sign up

Export Citation Format

Share Document