Finite-time Robust Control for Inertially Stabilized Platform Based on Terminal Sliding Mode

Author(s):  
GE Suoliang ◽  
ZHAO Lei ◽  
PING Zhaowu ◽  
YANG Shuang
Author(s):  
Ali Abooee ◽  
Mohammad Hayeri Mehrizi ◽  
Mohammad Mehdi Arefi ◽  
Shen Yin

This paper deals with the finite-time trajectory tracking problem for a typical 3-DOF (degree of freedom) autonomous surface vehicle (ASV) subjected to parametric uncertainties and environmental disturbances. Based on the nonsingular terminal sliding mode control (NTSMC) method, several separate classes of robust control inputs are designed to exactly steer all position states of the 3-DOF AVS to the desired paths during alterable finite times. By exploiting the Lyapunov stability theorem and using mathematical analysis, it is proven that all classes of designed robust control inputs are able to fulfill the mentioned finite-time tracking aim. Moreover, three applicable formulas (represented as several nonlinear inequalities) are extracted to determine the required total finite times for the suggested control schemes. Lastly, all designed control methods are numerically tested onto a benchmark 3-DOF AVS called CyberShip II. Provided computer-based numerical simulations (using MATLAB software) depicted the acceptable performance of the proposed control techniques.


Author(s):  
Yangming Zhang ◽  
Lingyun Xue ◽  
Biao Luo

This article presents a robust control scheme for a class of asymmetric hysteretic systems with both parametric uncertainties and external disturbances, where an asymmetric Bouc–Wen model is adopted to represent the hysteretic behavior. A novel adaptive non-singular terminal sliding mode control methodology with hysteretic state estimation is proposed to achieve finite-time stabilization of such systems for vibration suppressions. In the proposed control framework, a hysteresis observer is constructed to capture the unmeasurable hysteretic force, and the adaptive control technique is used to accommodate the hysteretic uncertainties and unknown system parameters. Moreover, a fast terminal sliding mode controller without the singularity problem is designed to improve the robustness and dynamic performance of such systems, where the terminal sliding mode function is proposed to guarantee the finite-time convergence of the system states, and the reaching law with fractional power is constructed to accelerate the occurrence of the corresponding terminal sliding mode surface. Meanwhile, the finite-time stability of the whole closed-loop system is also analyzed. Finally, numerical simulation results deployed on a magnetorheological elastomer vibration isolation system are provided to validate the effectiveness of the proposed control algorithm.


Author(s):  
Dalong Tian ◽  
Jianguo Guo

This study aims to develop an advanced integral terminal sliding-mode robust control method using a disturbance observer (DO) to suppress the forced vibration of a large space intelligent truss structure (LSITS). First, the dynamics of the electromechanical coupling of the piezoelectric stack actuator and the LSITS, based on finite element and Lagrangian methods, are established. Subsequently, to constrict the vibration of the structure, a novel integral terminal sliding-mode control (ITSMC) law for the DO is used to estimate the parameter perturbation of the LSITS based on a continuous external disturbance. Simulation results show that, under a forced vibration and compared with the ITSMC system without a DO, the displacement amplitude of the ITSMC system with the DO is effectively reduced. In the case where the model parameters of the LSITS deviate by ±50%, and an unknown continuous external disturbance exists, the control system with the DO can adequately attenuate the structural vibration and realize robust control. Concurrently, the voltage of the employed piezoelectric stack actuator is reduced, and voltage jitter is alleviated.


2020 ◽  
pp. 107754632098244
Author(s):  
Hamid Razmjooei ◽  
Mohammad Hossein Shafiei ◽  
Elahe Abdi ◽  
Chenguang Yang

In this article, an innovative technique to design a robust finite-time state feedback controller for a class of uncertain robotic manipulators is proposed. This controller aims to converge the state variables of the system to a small bound around the origin in a finite time. The main innovation of this article is transforming the model of an uncertain robotic manipulator into a new time-varying form to achieve the finite-time boundedness criteria using asymptotic stability methods. First, based on prior knowledge about the upper bound of uncertainties and disturbances, an innovative finite-time sliding mode controller is designed. Then, the innovative finite-time sliding mode controller is developed for finite-time tracking of time-varying reference signals by the outputs of the system. Finally, the efficiency of the proposed control laws is illustrated for serial robotic manipulators with any number of links through numerical simulations, and it is compared with the nonsingular terminal sliding mode control method as one of the most powerful finite-time techniques.


Sign in / Sign up

Export Citation Format

Share Document