Sliding mode control for direct current motor system with multi-channels and external disturbances

Author(s):  
Yong Chen ◽  
Longyu Xu ◽  
Meng Li ◽  
Gafary Mahmoud

To solve the deficiencies of speed-tracking control for DC motor systems with multiple transmission channels and external disturbances in recent remote-control systems, a second-order super twisting sliding mode control method is proposed. First, the model of a DC motor with multiple channels and external disturbances is considered. Then, an observer in the form of the super twisting algorithm is presented to estimate the states of the system. Furthermore, a second-order super twisting sliding mode control algorithm based on the super twisting observer is designed to track the speed of the DC motor. In this, a nonlinear term is constructed to restrain the external disturbances and jitters while switching among the channels. Also, the proposed method is testified to be stable. Finally, both simulations and practical experiments are conducted to demonstrate the availability of the methodology.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
P. Siricharuanun ◽  
C. Pukdeboon

A second-order sliding mode control for chaotic synchronization with bounded disturbance is studied. A robust finite-time controller is designed based on super twisting algorithm which is a popular second-order sliding mode control technique. The proposed controller is designed by combining an adaptive law with super twisting algorithm. New results based on adaptive super twisting control for the synchronization of identical Qi three-dimensional four-wing chaotic system are presented. The finite-time convergence of synchronization is ensured by using Lyapunov stability theory. The simulations results show the usefulness of the developed control method.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Xibei Ding ◽  
Alok Sinha

Super-twisting algorithm, a second-order sliding mode control method, is studied for hydropower plant frequency control. Two versions of this algorithm are introduced in this paper. Simulation results from both of these second-order methods and regular sliding mode control are compared on the basis of system responses and control efforts. It is shown that the second-order sliding mode controller is able to reduce chattering effects associated with the regular sliding mode control and preserve the robustness of the regular sliding mode control as well.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1444 ◽  
Author(s):  
Qian ◽  
Zhang ◽  
Wang ◽  
Wu

This paper addresses a second-order sliding mode control method for the formation problem of multirobot systems. The formation patterns are usually symmetrical. This sliding mode control is based on the super-twisting law. In many real-world applications, the robots suffer from a great diversity of uncertainties and disturbances that greatly challenge super-twisting sliding mode formation maneuvers. In particular, such a challenge has adverse effects on the formation performance when the uncertainties and disturbances have an unknown bound. This paper focuses on this issue and utilizes the technique of an extreme learning machine to meet this challenge. Within the leader–follower framework, this paper investigates the integration of the super-twisting sliding mode control method and the extreme learning machine. The output weights of this extreme learning machine are adaptively adjusted so that this integrated formation design has guaranteed closed-loop stability in the sense of Lyaponov. In the end, some simulations are implemented via a multirobot platform, illustrating the superiority and effectiveness of the integrated formation design in spite of uncertainties and disturbances.


2011 ◽  
Vol 383-390 ◽  
pp. 5964-5971 ◽  
Author(s):  
Yi Biao Sun ◽  
Ya Nan Jing ◽  
Jia Kuan Xia

The direct-drive ring permanent magnet torque motor is easily affected by parameters changes and the load torque disturbances, which reduces the servo performance of the system. In order to enhance the robustness of the servo system, the super twisting algorithm based on the second order sliding mode control (SMC) is proposed as the speed controller of the direct-drive servo system. The super twisting algorithm need not know the information of the sliding mode time derivative, which through the continuous control measure the sliding mode and its derivative approach zero in finite time. This method not only guarantees the robustness of the servo system and eliminates chatting, but also enhances the static precision of the servo system. The simulation results show that the servo system of the direct-drive NC rotary table has a very strong robustness by adopting the control method against parameters changes and the external disturbances.


2018 ◽  
Vol 41 (4) ◽  
pp. 1068-1078 ◽  
Author(s):  
Lu Liu ◽  
Shihong Ding ◽  
Li Ma ◽  
Haibin Sun

In this paper, a novel discontinuous second-order sliding mode control approach has been developed to handle sliding mode dynamics with a nonvanishing mismatched disturbance by using Lyapunov theory and a finite-time disturbance observer. Firstly, the finite-time disturbance observer is designed to estimate the nonvanishing mismatched disturbance. Secondly, a virtual controller has been constructed based on the estimated value such that the sliding variable can be stabilized to zero in a finite time. Then, the real discontinuous controller is designed to guarantee that the virtual controller can be well tracked in a finite time. Lyapunov analysis also verifies the finite-time stability of the closed-loop sliding mode control system. The developed discontinuous second-order sliding mode control method possesses two appealing features including strong robustness with respect to the matched and mismatched nonvanishing disturbances, and relaxation on the constant upper bound of uncertainties widely used in a conventional second-order sliding mode. Finally, an academic example is illustrated to verify the effectiveness of the proposed method.


2014 ◽  
Vol 596 ◽  
pp. 584-589
Author(s):  
Xi Jie Yin ◽  
Jian Guo Xu

The sliding mode variable structure control method for brushless DC motors with uncertain external disturbances and unknown loads is studied. A neural sliding mode control scheme is proposed for reducing chattering of sliding mode control. A global sliding mode manifold is designed in this approach, which guarantees that the system states can be on the sliding mode manifold at initial time and the system robustness is increased. A radial basis function neural network (RBFNN) is applied to learn the maximum of unknown loads and external disturbances. Based on the neural networks, the switching control parameters of sliding mode control can be adaptively adjusted with uncertain external disturbances and unknown loads. Therefore, the chattering of the sliding mode controller is reduced. Simulation results proved that this control scheme is valid.


Sign in / Sign up

Export Citation Format

Share Document