scholarly journals Early-Holocene to present palaeoenvironmental shifts and short climate events from the tropical wetland and lake sediments, Kukkal Lake, Southern India: Geochemistry and palynology

The Holocene ◽  
2016 ◽  
Vol 27 (3) ◽  
pp. 404-417 ◽  
Author(s):  
Vijayaraj Rajmanickam ◽  
Hema Achyuthan ◽  
Christopher Eastoe ◽  
Anjum Farooqui

The Kukkal basin, Tamil Nadu, India, receives most of its rain from the southwest monsoon (SWM). A sediment core from Kukkal Lake preserves a continuous sediment record from the early-Holocene to present (9000 yr BP to present). The present lake is situated at an elevation of ~1887 m a.s.l., in a small basin that appears to have alternated between a and wetland depositional environment. Climate proxies, including sediment texture, total organic carbon (TOC), total nitrogen (TN), C/N, pollen and geochemical composition indicate a steady progression to wetter conditions, with two stepwise changes at about 8000, and between 3200 and 1800 yr BP. The change at 8000 yr BP appears to correspond to a brief (100–150 years) dry spell recorded elsewhere in India. The change at 3200–1800 yr BP consisted in a rapid intensification of the SWM, and may correlate with the initiation of the ‘Roman Warm Period’. There is no clear evidence of changes at the times of the ‘Medieval Warm Period’ (‘MWP’) and the ‘Little Ice Age’ (‘LIA’). The C/N ratio of the sediments ranges from 14.02 to 8.31, indicating that the organic matter originated from a mixture of lacustrine algae, vascular and terrestrial plants. Chemical weathering indices (Chemical Index of Alteration (CIA), Chemical Index of Weathering (CIW), and Plagioclase Index of Alteration (PIA)) are consistent with extreme silicate weathering. Pollen data show a development from savanna vegetation prior to about 8000 yr BP, followed by grassland with palms, the appearance of ferns just prior to 3200 yr BP and the establishment of the tropical humid forest between 3200 and about 1800 yr BP.

2020 ◽  
Vol 133 (1-2) ◽  
pp. 379-392 ◽  
Author(s):  
Lily S. Pfeifer ◽  
Gerilyn S. Soreghan ◽  
Stéphane Pochat ◽  
Jean Van Den Driessche

Abstract Carboniferous–Permian strata in basins within the Central Pangean Mountains in France archive regional paleoequatorial climate during a unique interval in geological history (Pangea assembly, ice-age collapse, megamonsoon inception). The voluminous (∼1.5 km) succession of exclusively fine-grained red beds that comprises the Permian Salagou Formation (Lodève Basin, France) has long been interpreted to record either lacustrine or fluvial deposition, primarily based on a local emphasis of subaqueous features in the upper ∼25% of the section. In contrast, data presented here indicate that the lower-middle Salagou Formation is dominated by up to 15-m-thick beds of internally massive red mudstone with abundant pedogenic features (microscale) and no evidence of channeling. Up-section, limited occurrences of ripple and hummocky cross-stratification, and mudcracks record the intermittent influence of shallow water, but with no channeling nor units with grain sizes exceeding coarse silt. These data suggest that the most parsimonious interpretation for the Salagou Formation involves eolian transport of the sediment and ultimate deposition as loess in shallow, ephemeral lacustrine environments. Provenance analyses of the Salagou Formation indicate coarse-grained protoliths and, together with geochemical proxies (chemical index of alteration [CIA] and τNa) that correspond respectively to a low degree of chemical weathering and a mean annual temperature of ∼4 °C, suggest that silt generation in this case is most consistent with cold-weathering (glacial and associated periglacial) processes in the Variscan highlands. Together with previous studies that detailed voluminous Permian loess in western equatorial Pangea, this work shows a globally unique distribution of dust at low latitudes that can be linked either directly to glaciated alpine terranes or to reworked and deflated deposits of other types (e.g., fluvial outwash) where fine-grained material was originally generated from glacial grinding in alpine systems. These results further support a revised model for early Permian climate, in which extratropical ice sheets coexisted with a semiarid tropics that may have hosted significant ice at moderate elevation.


The Holocene ◽  
2020 ◽  
Vol 30 (8) ◽  
pp. 1163-1173 ◽  
Author(s):  
Zhe Sun ◽  
Kan Yuan ◽  
Xiaohuan Hou ◽  
Kejia Ji ◽  
Can-Ge Li ◽  
...  

The Asian summer monsoon and the mid-latitude Westerlies are major atmospheric circulation systems which influence the climate of the Tibetan Plateau (TP), and hence the water resources, ecology, and socioeconomic well-being of the region. The interplay between the monsoon and the Westerlies has been investigated on glacial–interglacial, millennial, and decadal scales. However, due to the scarcity of high-resolution climate records from the TP, there is a lack of information on the centennial scale, which is more closely related to the development of civilization. Here we present a decadal-resolution precipitation record covering the past ~3600 years from Ngamring Co in the southern TP. The record suggests the gradual weakening of the Indian Summer Monsoon (ISM) with multiple centennial-scale fluctuations, which are synchronous with temperature changes. Precipitation was relatively high during the Medieval Warm Period (MWP) and low during the Little Ice Age (LIA). A wet Roman Warm Period (RWP) and an abrupt dry spell at 2.8 ka are also identified. Comparisons suggest that an intensified Westerlies penetrated the southern TP during dry intervals, such as during the 2.8 ka event, ~1700–1450 cal yr BP, and the LIA; whereas an intensified monsoon prevailed during warm periods such as the MWP. The centennial-scale oscillations of precipitation in the southern TP during the late Holocene suggest the role of the Westerlies in regulating ISM moisture delivery to the region, which likely resulted from variations in the surface temperature of the North Atlantic together with solar activity.


The Holocene ◽  
2021 ◽  
pp. 095968362110032
Author(s):  
Paul B Hamilton ◽  
Scott J Hutchinson ◽  
R Timothy Patterson ◽  
Jennifer M Galloway ◽  
Nawaf A Nasser ◽  
...  

The paleolimnological record of diatoms and climate, spanning the last 2800 years, was investigated in a small subarctic lake (Pocket Lake) that from AD 1948 to 2004 was contaminated by gold smelting waste. An age-depth model was constructed using a combination of 210Pb, 14C, and tephra to determine a 2800 year history of lake ontogeny (natural aging), biological diversity, and regional climate variability. Diatoms form six strong paleoecological assemblages over time in response to changes in local hydrological and sedimentological conditions (including metals). Selected environmental variables explained 28.8% of the variance in the diatom assemblages, with Fe, Ca, and sediment end member distribution being important indicators. The diatom assemblages correlated to the Iron Age Cold Epoch (2800–2300 cal BP), Roman Warm Period (2250–1610 cal BP), Dark Age Cold Period (1500–1050 cal BP), Medieval Climate Anomaly (ca. 1100–800 cal BP), and the Little Ice Age (800–200 cal BP). The disappearance of Staurosira venter highlights the change from the Iron Age Cold Epoch to the Roman Warm Period. After deposition of the White River Ash (833–850 CE; 1117–1100 cal BP), transition to circumneutral conditions was followed in tandem by a transition to planktic influenced communities. Ten discrete peaks of Cu, Pb, and Zn were observed and attributed to soluble mobility from catchment soils through enhanced seepage and spring snowmelt. The prominent metal spikes were aligned with increases in Brachysira neoexilis. Downward mobilization of arsenic and antimony from contaminated surficial sediments highlight the problem of post depositional industrial contamination of paleosediments. Results demonstrate that paleoclimatic changes in the region, modulated by solar radiation, impacted temperature and precipitation in the lake catchment, influencing temporal shifts in diatom ecology. Changes in diatom taxa richness provided valuable information on the relative influence of water quality (planktic taxa) and sediment input (benthic taxa). The diatom assemblage succession also provides evidence that natural aging over time has played a role in the ecological evolution of the lake.


Geosciences ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 166
Author(s):  
Sarah Waltgenbach ◽  
Dana F. C. Riechelmann ◽  
Christoph Spötl ◽  
Klaus P. Jochum ◽  
Jens Fohlmeister ◽  
...  

The Late Holocene was characterized by several centennial-scale climate oscillations including the Roman Warm Period, the Dark Ages Cold Period, the Medieval Warm Period and the Little Ice Age. The detection and investigation of such climate anomalies requires paleoclimate archives with an accurate chronology as well as a high temporal resolution. Here, we present 230Th/U-dated high-resolution multi-proxy records (δ13C, δ18O and trace elements) for the last 2500 years of four speleothems from Bunker Cave and the Herbstlabyrinth cave system in Germany. The multi-proxy data of all four speleothems show evidence of two warm and two cold phases during the last 2500 years, which coincide with the Roman Warm Period and the Medieval Warm Period, as well as the Dark Ages Cold Period and the Little Ice Age, respectively. During these four cold and warm periods, the δ18O and δ13C records of all four speleothems and the Mg concentration of the speleothems Bu4 (Bunker Cave) and TV1 (Herbstlabyrinth cave system) show common features and are thus interpreted to be related to past climate variability. Comparison with other paleoclimate records suggests a strong influence of the North Atlantic Oscillation at the two caves sites, which is reflected by warm and humid conditions during the Roman Warm Period and the Medieval Warm Period, and cold and dry climate during the Dark Ages Cold period and the Little Ice Age. The Mg records of speleothems Bu1 (Bunker Cave) and NG01 (Herbstlabyrinth) as well as the inconsistent patterns of Sr, Ba and P suggests that the processes controlling the abundance of these trace elements are dominated by site-specific effects rather than being related to supra-regional climate variability.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Mayla A. Ramos-Vázquez ◽  
John S. Armstrong-Altrin

AbstractThe mineralogy, bulk sediment geochemical composition, and U–Pb ages of detrital zircons retrieved from the Barra del Tordo (Tordo) and Tesoro beach sediments in the northwestern Gulf of Mexico were analyzed to determine their provenance. The beach sediments are mainly composed of quartz, ilmenite, magnetite, titanite, zircon, and anorthite. The weathering proxies such as the Chemical Index of Alteration (CIA), Chemical Index of Weathering (CIW), and Plagioclase Index of Alteration (PIA), reveal a moderate-to-high intensity of weathering in the source area. The chondrite-normalized rare earth element (REE) patterns are similar to felsic igneous rocks, with large negative europium anomaly (Eu/Eu* = ~ 0.47–0.80 and ~ 0.57–0.67 in the Tordo and Tesoro beach sediments, respectively).Three major zircon U–Pb age groups are identified in the Tordo and Tesoro beach sediments, i.e., Proterozoic (~ 2039–595 Ma), Mesozoic (~ 244–70.3 Ma), and Cenozoic (~ 65.9–1.2 Ma). The differences of the zircon age spectrum between the Tordo and Tesoro beach sediments are not significant. The comparison of zircon U–Pb ages in this study with ages of potential source terranes suggests that the Mesozoic and Cenozoic zircons of the studied Tordo and Tesoro beach sediments were derived from the Eastern Alkaline Province (EAP) and Mesa Central Province (MCP). Similarly, the likely sources for the Proterozoic zircons were the Sierra Madre Oriental (SMOr) and Oaxaquia in the northwestern Gulf of Mexico. The results of this study further indicate that the sediments delivered to the beaches by rivers and redistributed by longshore currents were crucial in determining the sediment provenance.


2016 ◽  
Vol 12 (7) ◽  
pp. 1435-1444 ◽  
Author(s):  
James Shulmeister ◽  
Justine Kemp ◽  
Kathryn E. Fitzsimmons ◽  
Allen Gontz

Abstract. Here we present the results of a multi-proxy investigation – integrating geomorphology, ground-penetrating radar, and luminescence dating – of a high-elevation lunette and beach berm in northern New South Wales, eastern Australia. The lunette occurs on the eastern shore of Little Llangothlin Lagoon and provides evidence for a lake high stand combined with persistent westerly winds at the Last Glacial Maximum (LGM – centring on 21.5 ka) and during the early Holocene (ca. 9 and 6 ka). The reconstructed atmospheric circulation is similar to the present-day conditions, and we infer no significant changes in circulation at those times, as compared to the present day. Our results suggest that the Southern Hemisphere westerlies were minimally displaced in this sector of Australasia during the latter part of the last ice age. Our observations also support evidence for a more positive water balance at the LGM and early Holocene in this part of the Australian sub-tropics.


The Holocene ◽  
2016 ◽  
Vol 27 (4) ◽  
pp. 485-495 ◽  
Author(s):  
R Scott Anderson ◽  
Darrell S Kaufman ◽  
Edward Berg ◽  
Caleb Schiff ◽  
Thomas Daigle

Several important North American coastal conifers – having immigrated during the Holocene from the southeast – reach their northern and upper elevation limits in south-central Alaska. However, our understanding of the specific timing of migration has been incomplete. Here, we use two new pollen profiles from a coastal and a high-elevation site in the Eastern Kenai Peninsula–Prince William Sound region, along with other published pollen records, to investigate the Holocene biogeography and development history of the modern coastal Picea (spruce)– Tsuga (hemlock) forest. Tsuga mertensiana became established at Mica Lake (100 m elevation, near Prince William Sound) by 6000 cal. BP and at Goat Lake (550 m elevation in the Kenai Mountains) sometime after 3000 years ago. Tsuga heterophylla was the last major conifer to arrive in the region. Although driven partially by climate change, major vegetation changes during much of the Holocene are difficult to interpret exclusively in terms of climate, with periods of slow migration alternating with more rapid movement. T. mertensiana expanded slowly northeastward in the early Holocene, compared with Picea sitchensis or T. heterophylla. Difficulty of invading an already established conifer forest may account for this. We suggest that during the early Holocene, non-climatic factors as well as proximity to refugia, influenced rates of migration. Climate may have been more important after ~2600 cal. BP. Continued expansion of T. mertensiana at Goat Lake at the Medieval Climate Anomaly (MCA)–‘Little Ice Age’ (‘LIA’) transition suggests warm and wet winters. But expansion of T. mertensiana at both sites was arrested during the colder climate of the ‘LIA’. The decline was more extensive at Goat Lake, where climatic conditions may have been severe enough to reduce or eliminate the T. mertensiana population. T. mertensiana continued its expansion around Goat Lake after the ‘LIA’.


2016 ◽  
Vol 5 (1) ◽  
pp. 44 ◽  
Author(s):  
Bah Mamadou Lamine Malick ◽  
Hiroaki Ishiga

<span style="font-size: 10.5pt; font-family: 'Times New Roman','serif'; mso-bidi-font-size: 10.0pt; mso-fareast-font-family: 宋体; mso-font-kerning: 1.0pt; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;" lang="EN-US">Geochemistry of beach sand sediments collected from the Eastern San’in coast (n=17), Tango Peninsula (n=14) and Wakasa Bay (n=7) shorelines were investigated using XRF analyses for major and trace elements to characterize their composition, classification, maturity, provenance, tectonic setting and degree of weathering in source areas. Investigated sands from all sites were very similar showing depletion in all elements except SiO<sub>2</sub>, K<sub>2</sub>O and As relative to the UCCN and JUCN, suggesting a moderate geochemical maturation. Beach sand sediments from these locations can be classified as arkose, subarkose and litharenite that are chemically immature and formed under arid/semi-arid conditions with a tendency towards increasing chemical maturity suggesting that they are from multiple sources. The relatively low to moderate values of weathering indices of Chemical Index of Alteration (CIA), Plagioclase Index of Alteration (PIA) and Chemical Index of Weathering (CIW), the beach sands from all sites in the source area have undergone low to moderate degree of chemical weathering. A-CN-K and A-CNK-FM plots, which suggest a granitic source composition, also confirm that the sand samples from these sites have undergone low to moderate degree of chemical weathering in consistent with CIA, PIA and CIW values. A plot of the analyzed beach sands data on the provenance discriminating function F1/F2 showed that most of the investigated beach sand sediments in all locations fall within mafic to intermediate ocean island arc source; similar to the tectonic setting discrimination diagrams based on major elements suggesting a passive margin.</span>


1986 ◽  
Vol 8 ◽  
pp. 100-101 ◽  
Author(s):  
Tómas Jóhannesson

Records of the time variation of the terminus position of Icelandic glaciers since 1700 show clear responses to the little ice age and to the warm period from 1930 to 1960. These data are used to deduce limits for the response time of the glaciers. The response time turns out to be of the order of one or two hundred years. This is much shorter than the “long response time” of Nye’s kinematic wave theory.


Sign in / Sign up

Export Citation Format

Share Document