In utero exposure of high-dose di-n-butyl phthalate resulted in opposite effects on testicular cell apoptosis in late embryonic and pubertal male rat offspring

2017 ◽  
Vol 36 (12) ◽  
pp. 1236-1247 ◽  
Author(s):  
H Shen ◽  
K Liao ◽  
H-F Wu ◽  
H-C Lu ◽  
Y Li ◽  
...  

Objective: To investigate the effects of in utero exposure to high-dose di- n-butyl phthalate (DBP) on testicular cell apoptosis in late embryonic and pubertal male rat offspring. Methods: Twenty pregnant Sprague-Dawley (SD) rats were divided into two groups. During gestation day (GD) 12 to GD 19, control group was given 1 ml day−1 of olive oil and experimental group was given DBP 500 mg kg−1 day−1 by gavage. On GD 19.5 and postnatal day (PND) 45, the testes were removed. Morphological analysis of the testes was observed by transmission electron microscopy and hematoxylin and eosin (H&E) staining. Testicular cell apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). The expression of Bcl-2, Bax, and p53 was presented by immunohistochemistry (IHC) and western blot. Data of the two groups was compared using independent samples t-test and Mann–Whitney test by SPSS 20.0. Results: H&E staining showed that spermatogenetic cells were significantly decreased in DBP exposed pubertal rat testis. The apoptosis index of testes in DBP-treated group was significantly lower on GD 19.5 but higher on PND 45 than that of the controls ( p < 0.01). IHC and western blot revealed significantly increased expression of Bcl-2 in GD 19.5 rat testis and Bax and p53 in PND 45 rat testis after DBP exposure, compared with the control ( p < 0.05). Conclusion: In utero exposure of high-dose DBP resulted in opposite effects on testicular cell apoptosis in late embryonic and pubertal rat offspring. The overexpression of Bcl-2, Bax, and p53 might be related to the occurrence of abnormal apoptosis and finally produce male infertility.

JCI Insight ◽  
2020 ◽  
Vol 5 (10) ◽  
Author(s):  
Arvind Palanisamy ◽  
Tusar Giri ◽  
Jia Jiang ◽  
Annie Bice ◽  
James D. Quirk ◽  
...  

2012 ◽  
Vol 2 (1_suppl) ◽  
pp. s-0032-1319931-s-0032-1319931
Author(s):  
S. Al Rowas ◽  
R. Gawri ◽  
R. Haddad ◽  
A. Almaawi ◽  
L. E. Chalifour ◽  
...  

2009 ◽  
Vol 81 (Suppl_1) ◽  
pp. 636-636
Author(s):  
Kembra L. Howdeshell ◽  
Johnathan Furr ◽  
Christy R. Lambright ◽  
Vickie Wilson ◽  
L. Earl Gray

2020 ◽  
Vol 401 ◽  
pp. 115077
Author(s):  
Nathália Orlandini Costa ◽  
Simone Forcato ◽  
Andreza Manzato Cavichioli ◽  
Marina Rangel Ferro Pereira ◽  
Daniela Cristina Ceccatto Gerardin

Endocrinology ◽  
2010 ◽  
Vol 151 (2) ◽  
pp. 783-792 ◽  
Author(s):  
Prue A. Cowin ◽  
Elspeth Gold ◽  
Jasna Aleksova ◽  
Moira K. O'Bryan ◽  
Paul M. D. Foster ◽  
...  

Vinclozolin is an endocrine-disrupting chemical (EDC) that binds with high affinity to the androgen receptor (AR) and blocks the action of gonadal hormones on male reproductive organs. An alternative mechanism of action of Vinclozolin involves transgenerational effects on the male reproductive tract. We previously reported in utero Vinclozolin exposure-induced prostatitis (prostate inflammation) in postpubertal rats concurrent with down-regulation of AR and increased nuclear factor-κB activation. We postulated the male reproductive abnormalities induced by in utero Vinclozolin exposure could be reversed by testosterone supplementation, in contrast to the permanent modifications involving DNA methyltransferases (Dnmts) described by others. To test this hypothesis, we administered high-dose testosterone at puberty to Vinclozolin-treated rats and determined the effect on anogenital distance (AGD); testicular germ cell apoptosis, concentration of elongated spermatids, and the onset of prostatitis. Concurrently we examined Dnmt1, −3A, −3B, and −3L mRNA expression. Consistent with previous reports, in utero exposure to Vinclozolin significantly reduced AGD, increased testicular germ cell apoptosis 3-fold, reduced elongated spermatid number by 40%, and induced postpubertal prostatitis in 100% of exposed males. Administration of high-dose testosterone (25 mg/kg) at puberty normalized AGD, reduced germ cell apoptosis, and restored elongated spermatid number. Testosterone restored AR and nuclear factor-κB expression in the prostate and abolished Vinclozolin-induced prostatitis. Altered Dnmt expression was evident with in utero Vinclozolin exposure and was not normalized after testosterone treatment. These data demonstrate in utero Vinclozolin-induced male reproductive tract abnormalities are AR mediated and reversible and involve a mechanism independent of Dnmt expression.


Sign in / Sign up

Export Citation Format

Share Document