Smart analytical methods and applied chemometrics group – Department of Science and High Technology, University of Insubria in Como

NIR news ◽  
2021 ◽  
pp. 096033602110592
Author(s):  
Barbara Giussani
Author(s):  
J.R. McIntosh ◽  
D.L. Stemple ◽  
William Bishop ◽  
G.W. Hannaway

EM specimens often contain 3-dimensional information that is lost during micrography on a single photographic film. Two images of one specimen at appropriate orientations give a stereo view, but complex structures composed of multiple objects of graded density that superimpose in each projection are often difficult to decipher in stereo. Several analytical methods for 3-D reconstruction from multiple images of a serially tilted specimen are available, but they are all time-consuming and computationally intense.


Author(s):  
R. Packwood ◽  
M.W. Phaneuf ◽  
V. Weatherall ◽  
I. Bassignana

The development of specialized analytical instruments such as the SIMS, XPS, ISS etc., all with truly incredible abilities in certain areas, has given rise to the notion that electron probe microanalysis (EPMA) is an old fashioned and rather inadequate technique, and one that is of little or no use in such high technology fields as the semiconductor industry. Whilst it is true that the microprobe does not possess parts-per-billion sensitivity (ppb) or monolayer depth resolution it is also true that many times these extremes of performance are not essential and that a few tens of parts-per-million (ppm) and a few tens of nanometers depth resolution is all that is required. In fact, the microprobe may well be the second choice method for a wide range of analytical problems and even the method of choice for a few.The literature is replete with remarks that suggest the writer is confusing an SEM-EDXS combination with an instrument such as the Cameca SX-50. Even where this confusion does not exist, the literature discusses microprobe detection limits that are seldom stated to be as low as 100 ppm, whereas there are numerous element combinations for which 10-20 ppm is routinely attainable.


2015 ◽  
Vol 48 (06) ◽  
Author(s):  
H Esselmann ◽  
C Hafermann ◽  
O Jahn ◽  
I Kraus ◽  
J Vogelgsang ◽  
...  

1970 ◽  
pp. 56-63
Author(s):  
Tim Walters ◽  
Susan Swan ◽  
Ron Wolfe ◽  
John Whiteoak ◽  
Jack Barwind

The United Arab Emirates is a smallish Arabic/Islamic country about the size of Maine located at the tip of the Arabian Peninsula. Though currently oil dependent, the country is moving rapidly from a petrocarbon to a people-based economy. As that economy modernizes and diversifies, the country’s underlying social ecology is being buffeted. The most significant of the winds of change that are blowing include a compulsory, free K-12 education system; an economy shifting from extractive to knowledge-based resources; and movement from the almost mythic Bedouin-inspired lifestyle to that of a sedentary highly urbanized society. Led by resource-rich Abu Dhabi and Dubai, the federal government has invested heavily in tourism, aviation, re-export commerce, free trade zones, and telecommunications. The Emirate of Dubai, in particular, also has invested billions of dirhams in high technology. The great dream is that educated and trained Emiratis will replace the thousands of foreign professionals now running the newly emerging technology and knowledge-driven economy.


Sign in / Sign up

Export Citation Format

Share Document