Impaired diffusion tensor imaging findings in the corpus callosum and cingulum may underlie impaired learning and memory abilities in systemic lupus erythematosus

Lupus ◽  
2016 ◽  
Vol 25 (11) ◽  
pp. 1200-1208 ◽  
Author(s):  
I Shapira-Lichter ◽  
M Weinstein ◽  
N Lustgarten ◽  
E Ash ◽  
I Litinsky ◽  
...  
BMC Neurology ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Rex E Jung ◽  
Arvind Caprihan ◽  
Robert S Chavez ◽  
Ranee A Flores ◽  
Janeen Sharrar ◽  
...  

Lupus ◽  
2018 ◽  
Vol 27 (11) ◽  
pp. 1810-1818 ◽  
Author(s):  
E Kozora ◽  
C M Filley ◽  
D Erkan ◽  
A M Uluğ ◽  
A Vo ◽  
...  

Objective This pilot study aimed to examine longitudinal changes in brain structure and function in patients with systemic lupus erythematosus (SLE) using diffusion tensor imaging (DTI) and neuropsychological testing. Methods Fifteen female SLE patients with no history of major neuropsychiatric (NP) manifestations had brain magnetic resonance imaging (MRI) with DTI at baseline and approximately 1.5 years later. At the same time points, a standardized battery of cognitive tests yielding a global cognitive impairment index (CII) was administered. At baseline, the SLE patients had mean age of 34.0 years (SD = 11.4), mean education of 14.9 years (SD = 2.1), and mean disease duration of 121.5 months (SD = 106.5). The MRI images were acquired with a 3T GE MRI scanner. A DTI sequence with 33 diffusion directions and b-value of 800 s/mm2 was used. Image acquisition time was about 10 minutes. Results No significant change in cognitive dysfunction (from the CII) was detected. Clinically evaluated MRI scans remained essentially unchanged, with 62% considered normal at both times, and the remainder showing white matter (WM) hyperintensities that remained stable or resolved. DTI showed decreased fractional anisotropy (FA) and increased mean diffusivity (MD) in bilateral cerebral WM and gray matter (GM) with no major change in NP status, medical symptoms, or medications over time. Lower FA was found in the following regions: left and right cerebral WM, and in GM areas including the parahippocampal gyrus, thalamus, precentral gyrus, postcentral gyrus, angular gyrus, parietal lobe, and cerebellum. Greater MD was found in the following regions: left and right cerebral WM, frontal cortex, left cerebral cortex, and the putamen. Conclusions This is the first longitudinal study of DTI and cognition in SLE, and results disclosed changes in both WM and GM without cognitive decline over an 18-month period. DTI abnormalities in our participants were not associated with emergent NP activity, medical decline, or medication changes, and the microstructural changes developed in the absence of macrostructural abnormalities on standard MRI. Microstructural changes may relate to ongoing inflammation, and the stability of cognitive function may be explained by medical treatment, the variability of NP progression in SLE, or the impact of cognitive reserve.


Lupus ◽  
2021 ◽  
pp. 096120332110450
Author(s):  
Cong Zhou ◽  
Man Dong ◽  
Weiwei Duan ◽  
Hao Lin ◽  
Shuting Wang ◽  
...  

Background Systemic lupus erythematosus is often accompanied with neuropsychiatric symptoms. Neuroimaging evidence indicated that microstructural white matter (WM) abnormalities play role in the neuropathological mechanism. Diffusion tensor imaging (DTI) studies allows the assessment of the microstructural integrity of WM tracts, but existing findings were inconsistent. This present study aimed to conduct a coordinate‐based meta‐analysis (CBMA) to identify statistical consensus of DTI studies in SLE. Methods Relevant studies that reported the differences of fractional anisotropy (FA) between SLE patients and healthy controls (HC) were searched systematically. Only studies reported the results in Talairach or Montreal Neurological Institute (MNI) coordinates were included. The anisotropic effect size version of signed differential mapping (AES-SDM) was applied to detect WM alterations in SLE. Results Totally, five studies with seven datasets which included 126 patients and 161 HC were identified. The pooled meta-analysis demonstrated that SLE patients exhibited significant FA reduction in the left striatum and bilateral inferior network, mainly comprised the corpus callosum (CC), bilateral inferior fronto-occipital fasciculus (IFOF), bilateral anterior thalamic projections, bilateral superior longitudinal fasciculus (SLF), left inferior longitudinal fasciculus (ILF), and left insula. No region with higher FA was identified. Conclusions Disorders of the immune system might lead to subtle WM microstructural alterations in SLE, which might be related with cognitive deficits or emotional distress symptoms. This provides a better understanding of the pathological mechanism of microstructural brain abnormalities in SLE.


2005 ◽  
Vol 52 (9) ◽  
pp. 2783-2789 ◽  
Author(s):  
Simone Appenzeller ◽  
Jane Maryam Rondina ◽  
Li Min Li ◽  
Lilian T. L. Costallat ◽  
Fernando Cendes

Lupus ◽  
2018 ◽  
Vol 27 (10) ◽  
pp. 1624-1635
Author(s):  
A Kalinowska-Lyszczarz ◽  
M A Pawlak ◽  
A Pietrzak ◽  
K Pawlak-Bus ◽  
P Leszczynski ◽  
...  

Differentiation of systemic lupus erythematosus (SLE) from multiple sclerosis (MS) can be challenging, especially when neuropsychiatric (NP) symptoms are accompanied by white matter lesions in the brain. Given the lack of discriminative power of currently applied tools for their differentiation, there is an unmet need for other measures that can aid in distinguishing between the two autoimmune disorders. In this study we aimed at exploring whether brain atrophy measures could serve as markers differentiating MS and SLE. Thirty-seven relapsing–remitting MS and 38 SLE patients with nervous system manifestations, matched according to age and disease duration, underwent 1.5 Tesla magnetic resonance imaging (MRI), including volumetric sequences, and clinical assessment. Voxelwise analysis was performed using ANTS-SyN elastic registration protocol, FSL Randomise and Gamma methods. Cortical and subcortical segmentation was performed with Freesurfer 5.3 pipeline using T1-weighted MPRAGE sequence data. Using MRI volumetric markers of general and subcortical gray matter atrophy and clinical variables, we built a stepwise multivariable logistic diagnostic model to identify MRI parameters that best differentiate MS and SLE patients. We found that the best volumetric predictors to distinguish them were: fourth ventricle volume (sensitivity 0.86, specificity 0.57, area under the curve, AUC 0.77), posterior corpus callosum (sensitivity 0.81, specificity 0.57, AUC 0.68), and third ventricle to thalamus ratio (sensitivity 0.42, specificity 0.84, AUC 0.65). The same classifiers were identified in a subgroup analysis that included patients with a short disease duration. In MS brain atrophy and lesion load correlated with clinical disability, while in SLE age was the main determinant of brain volume. This study proposes new imaging parameters for differential diagnosis of MS and SLE with central nervous system involvement. We show there is a different pattern of atrophy in MS and SLE, and the key structural volumes that are differentially affected include fourth ventricle and posterior section of corpus callosum, followed by third ventricle to thalamus ratio. Different correlation patterns between volumetric and clinical data may suggest that while in MS atrophy is driven mainly by disease activity, in SLE it is mostly associated with age. However, these results need further replication in a larger cohort.


Sign in / Sign up

Export Citation Format

Share Document