scholarly journals Sertoli Cells Loaded with Doxorubicin in Lipid Micelles Reduced Tumor Burden and Dox-Induced Toxicity

2017 ◽  
Vol 26 (10) ◽  
pp. 1694-1702 ◽  
Author(s):  
Mahasweta Das ◽  
Mark Howell ◽  
Elspeth A. Foran ◽  
Rohit Iyre ◽  
Shyam S. Mohapatra ◽  
...  
Author(s):  
Rita Meyer ◽  
Zoltan Posalaky ◽  
Dennis Mcginley

The Sertoli cell tight junctional complexes have been shown to be the most important structural counterpart of the physiological blood-testis barrier. In freeze etch replicas they consist of extensive rows of intramembranous particles which are not only oriented parallel to one another, but to the myoid layer as well. Thus the occluding complex has both an internal and an overall orientation. However, this overall orientation to the myoid layer does not seem to be necessary to its barrier function. The 20 day old rat has extensive parallel tight junctions which are not oriented with respect to the myoid layer, and yet they are inpenetrable by lanthanum. The mechanism(s) for the control of Sertoli cell junction development and orientation has not been established, although such factors as the presence or absence of germ cells, and/or hormones, especially FSH have been implicated.


Author(s):  
J. Chakraborty ◽  
A. P. Sinha Hikim ◽  
J. S. Jhunjhunwala

Although the presence of annulate lamellae was noted in many cell types, including the rat spermatogenic cells, this structure was never reported in the Sertoli cells of any rodent species. The present report is based on a part of our project on the effect of torsion of the spermatic cord to the contralateral testis. This paper describes for the first time, the fine structural details of the annulate lamellae in the Sertoli cells of damaged testis from guinea pigs.One side of the spermatic cord of each of six Hartly strain adult guinea pigs was surgically twisted (540°) under pentobarbital anesthesia (1). Four months after induction of torsion, animals were sacrificed, testes were excised and processed for the light and electron microscopic investigations. In the damaged testis, the majority of seminiferous tubule contained a layer of Sertoli cells with occasional spermatogonia (Fig. 1). Nuclei of these Sertoli cells were highly pleomorphic and contained small chromatinic clumps adjacent to the inner aspect of the nuclear envelope (Fig. 2).


2006 ◽  
Vol 175 (4S) ◽  
pp. 310-310
Author(s):  
Nicholas J. Fitzsimons ◽  
Leon L. Sun ◽  
Thomas J. Polascik ◽  
Vladimir Mouraviev ◽  
Craig F. Donatucci ◽  
...  

1991 ◽  
Vol 125 (3) ◽  
pp. 280-285 ◽  
Author(s):  
J. Alan Talbot ◽  
Ann Lambert ◽  
Robert Mitchell ◽  
Marek Grabinski ◽  
David C. Anderson ◽  
...  

Abstract We have investigated the role of Ca2+ in the control of FSH-induced estradiol secretion by Sertoli cells isolated from 8-10 days old rats. Exogenous Ca2+ (4-8 mmol/1) inhibited FSH-stimulated E2 secretion such that, with 8 mmol/l Ca2+ and FSH (8 IU/l) E2 secretion decreased from 2091±322 to 1480±84 pmol/l (p<0.002), whilst chelation of Ca2+ in the culture medium with EGTA (3 mmol/l) increased E2 secretion from 360±45 to 1242±133 pmol/l) in the absence of FSH. Further, EGTA (3 mmol/l) markedly potentiated FSH (8 IU/l), forskolin (1 μmol/l) and dibutyryl cAMP (1 mmol/l)-stimulated E2 secretion. Addition of the Ca2+ ionophores, ionomycin (2-5 μmol/l) and A23187 (2 μmol/l), inhibited FSH (8 IU/l)-stimulated E2 secretion by >80%. The effect of ionomycin was totally reversible, whereas that of A23187 was irreversible. Ionomycin (5 μmol/l) had no effect on EGTA-induced E2 secretion in the absence of FSH, but reduced EGTA-provoked E2 secretion by 59% in the presence of FSH (8 IU/l). Similarly, forskolin- and dibutyryl cAMP-provoked E2 production was inhibited 46-50% by ionomycin (5 μmol/l). We conclude that FSH-induced E2 secretion from immature rat Sertoli cells is modulated by intra- and extracellular Ca2+.


1990 ◽  
Vol 66 (6) ◽  
pp. 393-403 ◽  
Author(s):  
Masamichi KUROHMARU ◽  
Takao NISHIDA ◽  
Yoshihiro HAYASHI ◽  
Shigeto YAMASHIRO ◽  
Tetsuya MATSUZAKI

2008 ◽  
Vol 109 (Supplement) ◽  
pp. 99-105 ◽  
Author(s):  
Andy J. Redmond ◽  
Michael L. DiLuna ◽  
Ryan Hebert ◽  
Jennifer A. Moliterno ◽  
Rani Desai ◽  
...  

Object Gamma Knife surgery (GKS) improves overall survival in patients with malignant melanoma metastatic to the brain. In this study the authors investigated which patient- or treatment-specific factors influence survival of patients with melanoma brain metastases; they pay particular interest to pre- and post-GKS hemorrhage. Methods Demographic, treatment, and survival data on 59 patients with a total of 208 intracranial metastases who underwent GKS between 1998 and 2007 were abstracted from treatment records and from the Connecticut Tumor Registry. Multivariate analysis was used to identify factors that independently affected survival. Results Survival was significantly better in patients with solitary metastasis (p = 0.04), lesions without evidence of pre-GKS hemorrhage (p = 0.004), and in patients with total tumor volume treated < 4 cm3 (p = 0.02). Intratumoral bleeding occurred in 23.7% of patients pre-GKS. Intratumoral bleeding occurred at a mean of 1.8 months post-GKS at a rate of 15.2%. Unlike the marked effect of pretreatment bleeding, posttreatment bleeding did not independently affect survival. Sex, systemic control, race, metastases location, whole-brain radiation therapy, chemotherapy, history of antithrombotic medications, and cranial surgery had no independent association with survival. Conclusions These data corroborate previous findings that tumor burden (either as increased number or total volume of lesions) at the time of GKS is associated with diminished patient survival in those with intracerebral melanoma metastases. Patients who were noted to have hemorrhagic melanoma metastases prior to GKS appear to have a worse prognosis following GKS compared with patients with nonhemorrhagic metastases, despite similar rates of bleeding pre- and post-GKS treatment. Gamma Knife surgery itself does not appear to increase the rate of hemorrhage.


Sign in / Sign up

Export Citation Format

Share Document