scholarly journals Preferable Transplant Site for Hepatocyte Transplantation in a Rat Model

2021 ◽  
Vol 30 ◽  
pp. 096368972110400
Author(s):  
Hiroyuki Ogasawara ◽  
Akiko Inagaki ◽  
Ibrahim Fathi ◽  
Takehiro Imura ◽  
Hiroki Yamana ◽  
...  

Intraportal injection is regarded as the current standard procedure of hepatocyte transplantation (HTx). In islet transplantation, which shares many aspects with HTx, recent studies have clarified that instant blood-mediated inflammatory reaction (IBMIR), characterized by strong innate immune responses, can cause poor engraftment, so other transplant sites to avoid such a reaction have been established. Although IBMIR was reported to occur in HTx, few reports have evaluated alternative transplant sites for HTx. In this study, we sought to determine the optimum transplant site for HTx. Rat hepatocytes (1.0 × 107) were transplanted at the 9 transplant sites (intraportal (IPO), intrasplenic (IS), liver parenchyma, subcutaneous, intraperitoneal, renal subcapsular, muscle, inguinal subcutaneous white adipose tissue, and omentum) of analbuminemic rats. The serum albumin levels, immunohistochemical staining (albumin, TUNEL, and BrdU), and in vivo imaging of the grafts were evaluated. The serum albumin levels of the IPO group were significantly higher than those of the other groups ( p < .0001). The BrdU-positive hepatocyte ratio of liver in the IS group (0.9% ± 0.2%) was comparable to that of the IPO group (0.9% ± 0.3%) and tended to be higher than that of the spleen in the IS group (0.5% ± 0.1%, p = .16). Considering the in vivo imaging evaluation and the influence of splenectomy, the graft function in the IS group may be almost entirely achieved by hepatocytes that have migrated to the liver. The present study clearly showed that the intraportal injection procedure is more efficient than other procedures for performing HTx

1998 ◽  
Vol 7 (3) ◽  
pp. 275-283 ◽  
Author(s):  
Pankaj Rajvanshi ◽  
Kuldeep K. Bhargava ◽  
Menes Afriyie ◽  
Maria V. Camaya ◽  
S. Gagandeep ◽  
...  

Liver repopulation with transplanted hepatocytes will generate novel cell-based therapies, although translocation of transplanted cells into lungs through portasystemic shunts has the potential for embolic complications. To facilitate safety analysis of hepatocyte transplantation, we wished to obtain effective cell surrogates and analyzed biodistributions of similarly sized 99mTc-labeled human serum albumin microspheres and rat hepatocytes. Image analysis with dual 99mTc and 111In labels indicated that cells and microspheres were similarly distributed in the liver when injected into normal rats via the spleen. Also, their distributions were similar when injected via a femoral vein or the superior mesenteric vein with cells and microspheres localizing in lungs or liver, respectively. Upon intraportal injection in rats with portal hypertension, microspheres localized in both liver and lungs, consistent with portasystemic shunting. These data demonstrate that human serum albumin microspheres are effective cell surrogates for approximating the safety of hepatocyte transplantation and should be clinically useful.


1978 ◽  
Vol 170 (3) ◽  
pp. 627-630 ◽  
Author(s):  
J Viña ◽  
R Hems ◽  
H A Krebs

1. During the standard procedure for the preparation of rat hepatocytes, about half of the cellular GSH (reduced glutathione) is lost. 2. This loss is prevented by the addition of 0.1 mM-EGTA (but no EDTA) to the perfusion medium. 3. On incubation with and without EGTA, isolated hepatocytes prepared in the presence of EGTA lose GSH. This loss is prevented by near-physiological concentrations of methionine or homocysteine, but not of cysteine. 4. Cysteine, at concentrations above 0.2 mM, causes a loss of GSH probably by non-enzymic formation of a mixed disulphide. 5. Serine together with methionine or homocystein increases GSH above the value in cells from starved rats in vivo. This is taken to suggest that cystathionine may be a cysteine donor in the synthesis of gamma-glutamylcysteine, the precursor of GSH.


2012 ◽  
Vol 35 (6) ◽  
pp. 450-457 ◽  
Author(s):  
Manil Chouhan ◽  
Juliana Puppi ◽  
Estela Solanas ◽  
Ragai R. Mitry ◽  
Anil Dhawan ◽  
...  

Background: Hepatocyte transplantation is a promising alternative to orthotopic liver transplantation, however, the fate of transplanted hepatocytes is not well defined. 99mTc-galactosyl-serum albumin (99mTc-GSA) is a clinical scintigraphic agent which is specifically taken up by the hepatocyte asialoglycoprotein receptor (ASGPR). Aims: To investigate labeling of fresh and cryopreserved human hepatocytes and fresh rat hepatocytes in vitro using 99mTc-GSA Methods: Human and rat hepatocytes were isolated from liver tissue by collagenase perfusion. The ASGPR were characterized using immunohistochemistry and RT-PCR. Hepatocytes were incubated with 99mTc-GSA in suspension at 4°C and 37°C. Cell viability and function was determined using cell mitochondrial dehydrogenase (MTS) and sulphorhodamine B (SRB) assays. Results: Fresh and cryopreserved human hepatocytes expressed the ASGPR. Incubation of hepatocytes in suspension with 99mTc-GSA reduced the viability of hepatocytes, but this was similar to unlabeled control cells. Greater loss of viability was seen on incubation at 37°C compared to 4°C, but there was a significantly greater uptake of 99mTc-GSA at the physiological temperature (6.6 ± SE 0.6-fold increase, p<0.05) consistent with ASGPR-mediated endocytosis. MTS and SRB assays were not significantly affected by labeling with 99mTc-GSA in all three cell types. A mean of 18.5% of the radioactivity was released over 120 min when 99mTc-GSA - labeled hepatocytes were shaken in vitro at 37°C. Conclusions: Human and rat hepatocytes can be labeled with 99mTc-GSA, which may have potential application for in vivo imaging after hepatocyte transplantation.


Author(s):  
Christina R. Inscoe ◽  
Alex J. Billingsley ◽  
Connor Puett ◽  
Cole Burks ◽  
Otto Zhou ◽  
...  

2019 ◽  
Vol 50 (4) ◽  
pp. 383-398 ◽  
Author(s):  
Nguyen-Thach Tung ◽  
Canh-Hung Nguyen ◽  
Van-Duong Nguyen ◽  
Thi-Hong-Thuy Nguyen ◽  
Van-Lam Nguyen ◽  
...  

1992 ◽  
Vol 40 (2) ◽  
pp. 201-206 ◽  
Author(s):  
P E Ballmer ◽  
K Ballmer-Hofer ◽  
F Repond ◽  
H Kohler ◽  
H Studer

The effects of an inflammatory insult on albumin of the rat liver were investigated at the cellular level and were correlated with serum albumin concentration. After SC injection of turpentine, the livers were perfused and fixed in vivo; serial liver sections were stained using a streptavidin-ABC-immunoperoxidase technique with an antibody to rat albumin. Albumin and total protein were measured at intervals after turpentine injection in whole livers and in serum. Fibrinogen was determined in plasma only. Twenty-four hours after turpentine injection serum albumin had dropped by 25% and was at 50% of its initial value at Day 3. Serum fibrinogen increased 2.4-fold within 24 hr and decreased thereafter. Liver homogenates showed no significant changes in albumin concentration. Immunohistochemically, all hepatocytes stained positive for albumin in normal animals. During inflammation, the immunostainable albumin content vanished entirely in a majority of all hepatocytes while remaining unchanged in other cells, thus producing a strikingly patchy staining pattern. No signs of resumption of albumin accumulation in depleted hepatocytes were seen after 8 days, despite a clear trend towards normalization of serum albumin concentration. These results suggest that individual hepatocytes differ widely in their response to agents that suppress albumin synthesis in an acute-phase reaction.


1987 ◽  
Vol 19 (3) ◽  
pp. 140-150 ◽  
Author(s):  
J.P.A.M. Vroemen ◽  
C.J. van der Linden ◽  
W.A. Buurman ◽  
J. Coenegracht ◽  
K.P.M. Heirwegh ◽  
...  

2020 ◽  
Vol 48 (6) ◽  
pp. 2657-2667
Author(s):  
Felipe Montecinos-Franjola ◽  
John Y. Lin ◽  
Erik A. Rodriguez

Noninvasive fluorescent imaging requires far-red and near-infrared fluorescent proteins for deeper imaging. Near-infrared light penetrates biological tissue with blood vessels due to low absorbance, scattering, and reflection of light and has a greater signal-to-noise due to less autofluorescence. Far-red and near-infrared fluorescent proteins absorb light &gt;600 nm to expand the color palette for imaging multiple biosensors and noninvasive in vivo imaging. The ideal fluorescent proteins are bright, photobleach minimally, express well in the desired cells, do not oligomerize, and generate or incorporate exogenous fluorophores efficiently. Coral-derived red fluorescent proteins require oxygen for fluorophore formation and release two hydrogen peroxide molecules. New fluorescent proteins based on phytochrome and phycobiliproteins use biliverdin IXα as fluorophores, do not require oxygen for maturation to image anaerobic organisms and tumor core, and do not generate hydrogen peroxide. The small Ultra-Red Fluorescent Protein (smURFP) was evolved from a cyanobacterial phycobiliprotein to covalently attach biliverdin as an exogenous fluorophore. The small Ultra-Red Fluorescent Protein is biophysically as bright as the enhanced green fluorescent protein, is exceptionally photostable, used for biosensor development, and visible in living mice. Novel applications of smURFP include in vitro protein diagnostics with attomolar (10−18 M) sensitivity, encapsulation in viral particles, and fluorescent protein nanoparticles. However, the availability of biliverdin limits the fluorescence of biliverdin-attaching fluorescent proteins; hence, extra biliverdin is needed to enhance brightness. New methods for improved biliverdin bioavailability are necessary to develop improved bright far-red and near-infrared fluorescent proteins for noninvasive imaging in vivo.


Sign in / Sign up

Export Citation Format

Share Document