Follow-up Study of the Revascularization Process of Purified Rat Islet Beta-Cell Grafts

1997 ◽  
Vol 6 (6) ◽  
pp. 603-612 ◽  
Author(s):  
José F. Mendola ◽  
Ignacio Conget ◽  
José María Manzanares ◽  
Helena Corominola ◽  
Odette Viñas ◽  
...  

The revascularization of islets of Langerhans transplanted in heterotopic sites like the liver by portal vein embolization or the renal subcapsular space is a major process necessary for the viability of grafted cells. This process has been extensively studied by different techniques and the results have shown that islet revascularization is an early phenomenon that takes place soon after transplantation. In this report we have analyzed by a double indirect immunofluorescence technique, the revascularization process of purified endocrine islet beta-cells transplanted in the renal subcapsular space of syngeneic rats. Lewis rats were grafted with islets cultured for 24 h, with a suspension of purified beta-cells cultured for 24 h, and with a suspension of purified beta plus nonbeta-cells cultured for 24 h. Rats were killed at different days after implantation and the kidney bearing the grafts were snap frozen and immunohistochemically stained with a rabbit anti factor VIII antiserum (which labels endothelial cells). Immunocytochemical analysis revealed that cultured islets completed revascularization by days 3-5 after transplantation, as shown by the detection of capillary endothelial cells within and surrounding the islets. Within purified endocrine beta-cell grafts, the presence of numerous endothelial cells was not observed until days 10-14, indicating that revascularization of beta-cells with host vessels is not such an early phenomenon as it takes place in whole isolated islets. Conversely, the addition of a population of endocrine nonbeta-cells to the purified islet cell grafts, partially accelerated the revascularization of pure beta-cell grafts, which showed the presence of abundant capillary endothelial cells already at day 7 after transplantation, indicating that some other unidentified factors besides the absence of endothelial cells may explain the retardation of beta-cell grafts revascularization.

1979 ◽  
Vol 150 (1) ◽  
pp. 1-9 ◽  
Author(s):  
E L Parr

Islets of Langerhans were isolated from mouse pancreases and fixed in periodatelysine-paraformaldehyde. The fixed islets were then dissociated with trypsin and EDTA to yield cell suspensions that contained mainly four cell types; beta-cells, capillary endothelial cells, acinar cells, and pancreatic duct epithelial cells. The nonislet cells were probably associated wtih the surface of the isolated islets. The H-2 antigens of the dissociated pancreatic cells were labeled with an immunoferritin technique. Pancreatic duct epithelial cells showed specific ferritin labeling on their lateral cell membranes but not on apical microvillus membranes. Acinar cells were also labeled on lateral membranes, and the capillary endothelial cells were labeled on both the luminal and albuminal aspects of their surface membranes. In contrast, pancreatic beta-cells were unlabeled. The number of ferritin molecules per unit length of beta-cell membrane was essentially the same on cells from the antigenic strain and the congeneic control strain, and was about 200-fold less than on the labeled pancreatic duct epithelial cell lateral membranes. Pancreatic beta-cells are therefore one of six known epithelial cell types on which H-2 antigens can not be detected by immunoferritin labeling. The apparent absence of H-2 antigens from these cells suggests a study of the viability of beta-cells in allografts of dissociated islet cells, in which the beta-cell would not be in contact with antigenic cells. Such studies might lead to a new approach to the control of diabetes mellitus by transplantation.


Diabetes ◽  
1989 ◽  
Vol 38 (11) ◽  
pp. 1396-1401 ◽  
Author(s):  
M. Peig ◽  
R. Gomis ◽  
G. Ercilla ◽  
R. Casamitjana ◽  
G. F. Bottazzo ◽  
...  

2008 ◽  
Vol 146 (5) ◽  
pp. 688-691.e2 ◽  
Author(s):  
Chun-Chi Chiang ◽  
Wen-Lu Chen ◽  
Jane-Ming Lin ◽  
Yi-Yu Tsai

2018 ◽  
Vol 41 (3) ◽  
pp. 152-159 ◽  
Author(s):  
Katarzyna Skrzypek ◽  
Yazmin Brito Barrera ◽  
Thomas Groth ◽  
Dimitrios Stamatialis

Introduction: Encapsulation of pancreatic islets or beta cells is a promising strategy for treatment of type 1 diabetes by providing an immune isolated environment and allowing for transplantation in a different location than the liver. However, islets used for encapsulation often show lower functionality due to the damaging of islet endothelial cells during the isolation procedure. Factors produced by endothelial cells have great impact on beta cell insulin secretion. Therefore, mutual signaling between endothelial cells and beta cells should be considered for the development of encapsulation systems to achieve high insulin secretion and maintain beta cell viability. Here, we investigate whether co-culture of beta cells with endothelial cells could improve beta cell function within encapsulation devices. Materials and methods: Mouse insulinoma MIN6 cells and human umbilical vein endothelial cells were used for creating composite aggregates on agarose microwell platform. The composite aggregates were encapsulated within flat poly(ether sulfone)/polyvinylpyrrolidone device. Their functionality was assessed by glucose-induced insulin secretion test and compared to non-encapsulated free-floating aggregates. Results: We created composite aggregates of 80–100 µm in diameter, closely mimicking pancreatic islets. Upon glucose stimulation, their insulin secretion is improved in comparison to aggregates consisting of only MIN6 cells. Moreover, the composite aggregates encapsulated within a device secrete more insulin than aggregates consisting of only MIN6 cells. Conclusion: Composite aggregates of MIN6 cells with human umbilical vein endothelial cells have improved insulin secretion in comparison to MIN6 aggregates showing that the interaction of beta cell and endothelial cell is crucial for a functional encapsulation system.


2009 ◽  
Vol 89 (03) ◽  
pp. 363-367 ◽  
Author(s):  
B. Bierwolf ◽  
H.-J. Verlohren ◽  
D. Lohmann ◽  
E. F. Lampeter ◽  
J. Krug

ChemTexts ◽  
2021 ◽  
Vol 7 (2) ◽  
Author(s):  
Sigurd Lenzen

AbstractThe biosynthesis of insulin takes place in the insulin-producing beta cells that are organized in the form of islets of Langerhans together with a few other islet cell types in the pancreas organ. The signal for glucose-induced insulin secretion is generated in two pathways in the mitochondrial metabolism of the pancreatic beta cells. These pathways are also known as the triggering pathway and the amplifying pathway. Glucokinase, the low-affinity glucose-phosphorylating enzyme in beta cell glycolysis acts as the signal-generating enzyme in this process. ATP ultimately generated is the crucial second messenger in this process. Insulin-producing pancreatic beta cells are badly protected against oxidative stress resulting in a particular vulnerability of this islet cell type due to low expression of H2O2-inactivating enzymes in various subcellular locations, specifically in the cytosol, mitochondria, peroxisomes and endoplasmic reticulum. This is in contrast to the glucagon-producing alpha cells and other islet cell types in the islets that are well equipped with these H2O2-inactivating enzymes. On the other hand the membranes of the pancreatic beta cells are well protected against lipid peroxidation and ferroptosis through high level expression of glutathione peroxidase 4 (GPx4) and this again is at variance from the situation in the non-beta cells of the islets with a low expression level of GPx4. The weak antioxidative defence equipment of the pancreatic beta cells, in particular in states of disease, is very dangerous because the resulting particular vulnerability endangers the functionality of the beta cells, making people prone to the development of a diabetic metabolic state.


Sign in / Sign up

Export Citation Format

Share Document