Wear Characterization of Aluminium Metal Matrix Composites

2013 ◽  
Vol 22 (4) ◽  
pp. 096369351302200 ◽  
Author(s):  
S. Vijayakumar ◽  
L. Karunamoorthy

Aluminium metal matrix composites wear characterization is presented in the paper. The LM25 grade aluminium alloy is chosen as matrix material and reinforcements are silicon carbide, zircon and garnet particles. AlMMCs are produced by conventional stir casting method and heat treated before making wear test specimens according to the ASTM G99 standards. The wear behaviour of these composites is studied under laboratory conditions using a pin-on-disc wear test rig. The wear behaviour of these composites is studied under sliding on EN32 steel disc. The influence of reinforcement type, volume fraction, particle size, sliding speed, applied load and sliding distance is analyzed.

2014 ◽  
Vol 612 ◽  
pp. 157-162 ◽  
Author(s):  
J. Udaya Prakash ◽  
T.V. Moorthy ◽  
S. Ananth

Wear behaviour of aluminium matrix composites are characterized by pin on disc wear test using various parameters such as sliding distance, sliding speed and load. MMC consists of aluminium alloy (A356) as the matrix material and particulate alumina of 5% and 10% by weight as the reinforcement was fabricated using stir casting. Wear resistance of composites are improved by the presence of reinforcements. Experiments were conducted based on the plan of experiments generated through Taguchi Technique. L9 orthogonal array was selected for analysis of data. The objective of this investigation is to study the influence of sliding speed, sliding distance, load and weight percentage reinforcement on wear rate of fabricated metal matrix composites.


2021 ◽  
Vol 23 (10) ◽  
pp. 44-60
Author(s):  
M. Thayumanavan ◽  
◽  
K. RVijayaKumar ◽  

Among the various types of manufacturing process methods for discontinuous metal matrix composite, stir casting is the best suitable manufacturing process to fabricate particulate reinforced metal matrix composite. Its benefit is its simplicity, durability, and adaptability. The main issue in this process is proper wetting of reinforcement in aluminium matrix material. Only proper wetting results in a homogeneous dispersion of reinforcement material, and these homogeneous dispersions help to improve the properties of metal matrix composite material. The purpose of this paper was to discuss the outline of the stir casting process, process parameters, and the contribution effect of process parameters. This paper also presents about of the conditions should follow during the addition of reinforcement material and matrix material pouring in mould cavity. This paper also discusses the conditions that must be met during the addition of reinforcement material and matrix material pouring in the mould cavity. This paper also looked into the impact and contribution of stirring casting time, speed, and temperature in aluminium metal matrix composites, as well as processing issues in aluminium metal matrix composites, challenges, and research opportunities.


Author(s):  
T S Mahmoud ◽  
F H Mahmoud ◽  
H M Zakaria ◽  
T A Khalifa

This article describes the effect of the squeezing process on the porosity of partially remelted A319/20 vol% SiC particulate (SiCp) reinforced metal matrix composites (MMCs). The composite alloy was originally fabricated by a stir casting technique. The effect of squeezing process parameters such as the squeezing time, compressive stress, and the liquid weight fraction inside the melt on the overall porosity was extensively studied. Moreover, pin-on-disc wear tests were conducted to evaluate the effect of porosity on the wear resistance of the composites. It was found that the squeezed composites have lower overall porosity when compared with the as-cast composites. The lowest overall porosity content was observed when the squeezing process variables were at their peak values. After squeezing, the gas-bubble voids were practically eliminated, whereas the inter-particle voids were significantly reduced but not completely eliminated due to fracture of SiCp and generation of new inter-particle microvoids. Wear test results showed that the wear resistance of the squeezed composites was significantly higher than the as-cast composites due to the lower porosity content of the squeezed composites. The wear resistance of the squeezed composites depends significantly on the overall porosity. It has been found that the wear rate of the squeezed composites increase with increasing overall porosity.


2014 ◽  
Vol 592-594 ◽  
pp. 917-921 ◽  
Author(s):  
K. Rajkumar ◽  
S. Santosh

Al-graphite and Al-Nanographite particulate metal matrix composites were prepared by two step stir casting method. The reinforced particulates in the metal matrix composites varied from 5% to 10% by volume fraction. Tribological performances of these composites were evaluated based on graphite particle size and normal load using a pin-on-disc tribometer. Al-Nanographite composites show higher load withstanding capacity and low coefficient of friction compared to aluminium graphite composites by the way of forming a thick graphite layer at the contact surface.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Krishna Mohan Singh ◽  
Akhilesh Kumar Chauhan

The aim of this research paper is to find the wear behaviour of Al7075 MMCs. In this investigation, the wear tests on the as-cast and age-hardened specimens were performed on an advanced rotary tribometer. The materials selected for the analysis are Al7075 as a matrix, and the reinforcements are boron carbide. By using stir casting, metal matrix composites are manufactured by adding B4C as a reinforcement particulate in Al7075. The fabricated composites were characterized and the wear behaviour of these composites was carried out on an advanced rotary tribometer. The wt. % of the reinforcements was taken as 6%, 8%, 10%, and 12%. The almost homogeneous blending of reinforcements is shown by the microstructural characterization of Al7075 MMCs. It is observed that due to the rise in weight percentage of the reinforcement to 12% higher hardness is obtained. For 12% of reinforcements, there is an increase in hardness due to the heat treatment than that of the as-cast composites. From this study, it was found that the wear rate is the function of the applied load, microstructure, and volume fraction of the reinforcements. The wear rate was increasing with the sliding velocity.


Sign in / Sign up

Export Citation Format

Share Document