scholarly journals The influence of Carbon Fibre Surface Treatment on Fibre-Fibre Interactions in Multi-Fibre Microcomposites

1994 ◽  
Vol 3 (6) ◽  
pp. 096369359400300 ◽  
Author(s):  
P.W.J. van den Heuvel ◽  
Y.J.W. van der Bruggen ◽  
T. Peijs

Multi-fibre microcomposites were used to study the influence of fibre/matrix adhesion on the fracture process of composites in uniaxial tension. In addition to in-situ microscopic observations, results were quantitatively described using an interaction criterion. In the case of surface treated carbon fibres, fibre-fibre interaction or so-called coordinated fibre failure takes place at inter-fibre spacings of less than nine fibre diameters. Moreover, it was found that the level of fibre surface treatment, i.e. the amount of debonding, significantly influences the amount of fibre-fibre interaction.

1989 ◽  
Vol 170 ◽  
Author(s):  
D J Hodge ◽  
B A Middlemiss ◽  
J A Peacock

AbstractSurface energies of carbon fibres at different levels at surface treatment have been determined by a wetting force technique and related to fibre-matrix adhesion in carbon fibre reinforced PEEK composite. The effect of oxidative surface treatment on the surface free energy is detailed, along with the changes in surface oxygen and nitrogen content, as determined by X-ray photoelectron spectroscopy (XPS). The work of adhesion has been calculated for the carbon fibres and thermoplastic, which correlate well with experimental determination of interfacial strength. The technique can therefore be used to predict adhesion levels in fibre reinforced composites.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2253 ◽  
Author(s):  
Jan Henk Kamps ◽  
Luke Henderson ◽  
Christina Scheffler ◽  
Ruud van der Heijden ◽  
Frank Simon ◽  
...  

To achieve good mechanical properties of carbon fibre-reinforced polycarbonate composites, the fibre-matrix adhesion must be dialled to an optimum level. The electrolytic surface treatment of carbon fibres during their production is one of the possible means of adapting the surface characteristics of the fibres. The production of a range of tailored fibres with varying surface treatments (adjusting the current, potential, and conductivity) was followed by contact angle, inverse gas chromatography and X-ray photoelectron spectroscopy measurements, which revealed a significant increase in polarity and hydroxyl, carboxyl, and nitrile groups on the fibre surface. Accordingly, an increase in the fibre-matrix interaction indicated by a higher interfacial shear strength was observed with the single fibre pull-out force-displacement curves. The statistical analysis identified the correlation between the process settings, fibre surface characteristics, and the performance of the fibres during single fibre pull-out testing.


Author(s):  
J Li

Polyacrylonitrile (PAN)-based carbon fibres were surface treated by ozone modification method and air-oxidation treatment. The interfacial properties of carbon fibre reinforced polyamide 6 (CF/PA6) composites were investigated by means of the single fibre pull-out tests. The surface characteristics of carbon fibres were characterized by X-ray photoelectron spectroscopy (XPS). As a result, it was found that interfacial shear strength values of the composites with ozone-treated carbon fibre are greatly increased. XPS results show that ozone treatment increases the amount of carboxyl groups on the carbon fibre surface, thus the interfacial adhesion between carbon fibre and PA6 matrix is effectively promoted. The effect of surface treatment of carbon fibres on the tribological properties of CF/PA6 composites was comparatively investigated. Experimental results revealed that surface treatment can effectively improve the interfacial adhesion between carbon fibre and PA6 matrix. Thus the wear resistance was significantly improved.


2014 ◽  
Vol 554 ◽  
pp. 116-122 ◽  
Author(s):  
Seyed Meysam Khoshnava ◽  
Raheleh Rostami ◽  
Mohammad Ismail ◽  
Alireza Valipour

Although Natural Fibres have various potential and advantages such as lower in weight, embodied energy and toxicity but their drawbacks are provided relentless competition between natural and synthetics fibres. Intrinsically, Natural Fibres are hydrophilic that is leaded to poor resistance to moisture and incompatible to hydrophobic polymer matrix. This incompatibility of natural fibres results in poor fibre/matrix interface which in turn leads to reduce mechanical properties of the composites. This study try to litreature some methods of chemical treatment or surface modification of Natural Fibres for improving this drawback of natural fibres. The objective of this research is fungi treatment as Green Surface Treatment that is indicate to environmental friendlier process. The use of fungi can provide low cost, highly efficient and environmentally friendly alternatives to natural fibre surface treatment.


2015 ◽  
Vol 3 (7) ◽  
pp. 3360-3371 ◽  
Author(s):  
L. Servinis ◽  
L. C. Henderson ◽  
L. M. Andrighetto ◽  
M. G. Huson ◽  
T. R. Gengenbach ◽  
...  

An in situ diazonium grafting methodology was used to decorate the surface of carbon fibres with pendant amines. This methodology was shown to greatly affect IFSS in single fibre composites.


Sign in / Sign up

Export Citation Format

Share Document