scholarly journals Performance of Real-Time Reverse Transcription Polymerase Chain Reaction for the Detection of Foot-and-Mouth Disease Virus during Field Outbreaks in the United Kingdom in 2007

2009 ◽  
Vol 21 (3) ◽  
pp. 321-330 ◽  
Author(s):  
Scott M. Reid ◽  
Katja Ebert ◽  
Katarzyna Bachanek-Bankowska ◽  
Carrie Batten ◽  
Anna Sanders ◽  
...  

Rapid and accurate diagnosis is essential for effective control of foot-and-mouth disease (FMD). The present report describes the practical steps undertaken to deploy a real-time reverse transcription polymerase chain reaction (real-time RT-PCR) to process the samples received during the outbreaks of FMD in the United Kingdom in 2007. Two independent real-time RT-PCR assays targeting different regions (5′UTR and 3D) of the FMD virus (FMDV) genome were used to confirm the presence of FMDV in clinical samples collected from the first infected premises. Once the FMDV strain responsible had been sequenced, a single real-time RT-PCR assay (3D) was selected to test a total of 3,216 samples, including material from all 8 infected premises. Using a 96-well automated system to prepare nucleic acid template, up to 84 samples could be processed within 5 hr of submission, and up to 269 samples were tested per working day. A conservative cut-off was used to designate positive samples, giving rise to an assay specificity of 99.9% or 100% for negative control material or samples collected from negative premises, respectively. For the first time, real-time RT-PCR results were used to recognize preclinical FMD in a cattle herd. Furthermore, during the later stages of the outbreaks, the real-time RT-PCR assay supported an active surveillance program within high-risk cattle herds. To the authors' knowledge, this is the first documented use of real-time RT-PCR as a principal laboratory diagnostic tool following introduction of FMD into a country that was FMD-free (without vaccination) and highlights the advantages of this assay to support control decisions during disease outbreaks.

2004 ◽  
Vol 72 (3) ◽  
pp. 496-501 ◽  
Author(s):  
Xiaoli L. Pang ◽  
Bonita Lee ◽  
Nasim Boroumand ◽  
Barbara Leblanc ◽  
Jutta K. Preiksaitis ◽  
...  

2006 ◽  
Vol 24 (18_suppl) ◽  
pp. 9553-9553
Author(s):  
J. Liu ◽  
K. Qu ◽  
C. Chai ◽  
H. Li ◽  
A. Sferruzza ◽  
...  

9553 Background: Synovial sarcoma is the most common non-rhabdomyosarcomatous soft tissue sarcoma in children and adolescents. A specific translocation, t(X;18), induces fusion of the SYT gene on chromosome 18 to an SSX gene on chromosome X. The resulting fusion gene consists of at least 2 subtypes with different breakpoints: SYT-SSX1(X;18)(p11.23;q11.2) and SYT-SSX2 (X;18)(p11.21;q11.2). Because t(X;18) transcripts occur in >90% of synovial sarcoma subtypes, this marker may be useful for diagnosis. We evaluated the accuracy of a multiplex real-time reverse transcription-polymerase chain reaction (RT-PCR) assay for detection of the primary SYT-SSX fusion transcript types in formalin-fixed, paraffin-embedded (FFPE) tissues and frozen tissues. Methods: 17 tumors (7 synovial sarcomas, 4 Ewing’s sarcomas, 5 rhabdomyosarcomas, 1 small round blue-cell tumor), 4 normal tissues, and 4 control samples were tested for SYT-SSX translocations using real-time RT-PCR. Results were compared to those obtained with gel electrophoresis detection of amplified transcripts; discrepant results were confirmed by sequencing. Results: Concordance between real time RT-PCR and gel electrophoresis was 100% (25/25) for internal control genes and SYT-SSX1, and 92% (23/25) for SYT-SSX2. Of the 2 samples with discordant SYT-SSX2 results, 1 was positive by real-time RT-PCR but not gel electrophoresis and 1 was positive by electrophoresis but not real-time RT-PCR; in both cases, DNA sequencing confirmed the real-time RT-PCR results. The minimum percentage of tumor to normal cells required for detection of SYT-SSX fusion transcripts by real-time RT-PCR was 6.25%. Conclusions: This real-time RT-PCR assay appears to provide greater accuracy than gel electrophoresis for identification of SYT-SSX translocation and fusion types. No significant financial relationships to disclose.


2006 ◽  
Vol 175 (4S) ◽  
pp. 485-486
Author(s):  
Sabarinath B. Nair ◽  
Christodoulos Pipinikas ◽  
Roger Kirby ◽  
Nick Carter ◽  
Christiane Fenske

2016 ◽  
Vol 4 (2) ◽  
pp. 264-270 ◽  
Author(s):  
Aml Soliman ◽  
Asmaa Abdel Aal ◽  
Reham Afify ◽  
Noha Ibrahim

AIM: Aim was to detect Brain and Acute Leukemia, Cytoplasmic (BAALC) and ETS-related gene (ERG) expression in patients with acute myeloid leukemia (AML) as well as to study their biologic and prognostic impact on the disease outcome and survival.PATIENTS AND METHODS: The current study was carried out on 44 patients with denovo acute myeloid leukemia, as well as 44 age and sex matched controls. The quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was performed for estimation of BAALC and ERG expression.RESULTS: The current study was carried out on 44 patients with denovo acute myeloid leukemia, as well as 44 age and sex matched controls. The quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) assay was performed for estimation of BAALC and ERG expression. BAALC was expressed in 36 (81.82%) of AML cases versus 10 (22.72%) of the control group which was highly statistically significant (P < 0.001). While ERG was positive in 39(88.64%) of cases and 8(18.18 %) of controls and that was also highly statistically significant (P < 0.001).CONCLUSION: Further researches still needed to clarify the role of BAALC and ERG in the pathogenesis of leukemia and their importance as targets for treatment of AML.


2003 ◽  
Vol 112 (3) ◽  
pp. 252-257 ◽  
Author(s):  
Toshio Ishibashi ◽  
Hiroko Monobe ◽  
Masanobu Shinogami ◽  
Yuka Nomura ◽  
Jun Yano

Because respiratory viruses play an important role in the causation and pathogenesis of acute otitis media (AOM), determining which virus has infected a child is important with respect to vaccines and antiviral drugs. In some instances, this information might be used to prevent the occurrence of AOM. We used a rapid, economical, and sensitive diagnostic system involving a multiplex nested reverse transcription–polymerase chain reaction (RT-PCR) assay to detect various respiratory viruses in clinical specimens of middle ear fluid (MEF) from children with AOM in our hospital. Multiplex RT-PCR was completed on 40 MEF samples from 28 infants and children less than 6 years old with AOM. Viral RNA was detected in 17 MEF samples (43%). Respiratory syncytial virus type A was present in 12 samples, adenovirus in 3, rhinovirus in 2, and influenza A (H3N2) in 1. The multiplex RT-PCR assay is recommended to clinical laboratories that are considering adoption of a molecular technique for viral diagnosis.


2009 ◽  
Vol 21 (5) ◽  
pp. 679-683 ◽  
Author(s):  
Pamela J. Ferro ◽  
Jason Osterstock ◽  
Bo Norby ◽  
Geoffrey T. Fosgate ◽  
Blanca Lupiani

As concerns over the global spread of highly pathogenic avian influenza H5N1 have heightened, more countries are faced with increased surveillance efforts and incident response planning for handling a potential outbreak. The incorporation of molecular techniques in most diagnostic laboratories has enabled fast and efficient testing of many agents of concern, including avian influenza. However, the need for high-throughput testing remains. In this study, the use of a 384–well format for high-throughput real-time reverse transcription polymerase chain reaction (real-time RT-PCR) testing for avian influenza is described. The analytical sensitivity of a real-time RT-PCR assay for avian influenza virus matrix gene with the use of both 96– and 384–well assay formats and serial dilutions of transcribed control RNA were comparable, resulting in similar limits of detection. Of 28 hunter-collected cloacal swabs that were positive by virus isolation, 26 (92.9%) and 27 (96.4%) were positive in the 96– and 384–well assays, respectively; of the 340 hunter-collected swabs that were negative by virus isolation, 45 (13.2%) and 23 (6.8%) were positive in the 96– and 384–well assays, respectively. The data presented herein supports the utility of the 384–well format in the event of an avian influenza outbreak for high-throughput real-time RT-PCR testing.


2006 ◽  
Vol 89 (5) ◽  
pp. 1335-1340
Author(s):  
Amir Abdulmawjood ◽  
Holger Schnenbrcher ◽  
Michael BÜlte

Abstract A collaborative trial was conducted to evaluate a real-time reverse transcriptase-polymerase chain reaction (RT-PCR) assay for detection of central nervous system (CNS) tissues in meat products (e.g., sausages). The method is based on the detection of ruminant glial fibrillary acidic protein (GFAP) mRNA by applying real-time RT-PCR. The assay was evaluated through a multicenter trial involving 12 participating laboratories that received coded cDNA obtained from 3 different types of sausages. The participants used 5 different real-time detection systems. The results obtained in this validation revealed that this real-time RT-PCR assay performed well in the different laboratories with a detection limit of at least 0.1% CNS in those test materials that contained strongly heat-treated samples (sausages cooked at 120C) and the medium heat-treated samples (sausages cooked at 80C). The detection limit of liver sausages was determined to be 0.2% of CNS. Neither the samples with no CNS additive nor the bovine DNA and the negative control containing 100% swine brain gave any positive signals. The presented results indicate that the real-time RT-PCR assay was just as reproducible between laboratories, as repeatable within a laboratory, could reliably be used for detection of bovine spongiform encephalopathy risk material in meat and meat products, and signify that it may be used with confidence in any laboratory.


Sign in / Sign up

Export Citation Format

Share Document