Strategy for enhancing the active harvesting of piezoelectric energy

2016 ◽  
Vol 28 (8) ◽  
pp. 1059-1070 ◽  
Author(s):  
Kenji Yoshimizu ◽  
Yuta Yamamoto ◽  
Kei Asahina ◽  
Kanjuro Makihara

This article proposes new methods for enhancing the active harvest of piezoelectric energy using the synchronized switch harvesting on inductor (SSHI) technique. It was experimentally confirmed that the energy harvested by the original synchronized switch harvesting on inductor technique was decreased by the suppression of the vibration amplitude, and this critical problem was solved by developing new control strategies, namely, switch harvesting considering vibration suppression (SCVS) and adaptive SCVS (ASCVS). The SCVS technique was designed to intentionally skip some of the switching actions of the original synchronized switch harvesting on inductor technique, while the ASCVS technique enables more flexible variation of the number of skipped switching actions. The skipping of the switching actions facilitates the recovery of the vibration amplitude produced by the excitation force, and the developed strategies thus maintain the vibration amplitude at the highest possible level, resulting in increased energy harvest. The results of the experimental implementation of the proposed strategies showed that they enabled the harvesting of as much as 10.5 times the energy harvested by the original synchronized switch harvesting on inductor technique. The ASCVS technique particularly enables flexible enhancement of the harvested energy under various vibration conditions.

2011 ◽  
Vol 199-200 ◽  
pp. 1496-1500
Author(s):  
Jia Man ◽  
Lian Hong Zhang ◽  
Yong Liang Chen

It is key to improve the machining efficiency of finishing lapping machine to restrain the vibration that raise with work speed. The vibration amplitude is influenced by the excitation force of unbalanced crank-rocker mechanism and the anti-vibration performance of guide. Following improving schemes as adding counterweight to crank-rocker mechanism, adopting the light material motion components and enhancing the anti-vibration performance of guide are proposed based on theoretical and experimental studies. The improving schemes are verified by the experiment.


Author(s):  
Harry A. Pierson ◽  
Kumer V. Singh

The economical production of high-value, low-volume, machined components is an important subtopic of advanced manufacturing. Bar feeders, a well-established technology for adding a high degree of automation to CNC turning centers by feeding 12′ lengths of stock through the machine spindle, have limitations in this realm. They rely on supporting the entire length of the stock in a continuous fluid bearing in order to suppress potential vibrations. Although this results in excellent vibration suppression, long tooling changeovers make them impractical for small batch sizes. Additionally, the expense of the tooling can render them cost-prohibitive. Thus a bar feeder technology is desired that provides comparable vibration suppression for a wide variety of stock sizes without the need for size-specific tooling changes. In this, a movable point support having tunable viscoelastic properties is studied for controlling the vibration of varying lengths of bar stock in a given speed range. The transverse vibration of mounted bar stock is modeled as a Bernoulli-Euler beam. The effects of the support position, viscoelastic model, and their associated parameters on the resonant frequencies, damping ratios, and vibration response of the bar stock are studied. Such a study will be instrumental in developing passive/active vibration control strategies for future bar feeders.


2020 ◽  
Vol 10 (23) ◽  
pp. 8486
Author(s):  
Alex Mouapi ◽  
Nadir Hakem ◽  
Nahi Kandil

The vibrations, due to their abundance in most industrial processes, constitute an attractive solution for the power supply of Industrial Wireless Sensor (IWS). However, the amount of energy that can be harvested presents numerous fluctuations due to the engines’ different operating modes (overload, full load, or even operation without charge). Most designs do not incorporate this fluctuation in the definition of the specifications of the autonomous IWS. This paper then presents a design method to ensure the node’s energy autonomy while maximizing its Quality of Service (QoS). To precisely define the specifications of the IWS, vibration measurements were carried out at its location for one month. The recorded data was used to propose a new Predictor of the Harvestable Energy from Vibrations (PHEV). A comparative evaluation of the proposed PHEV performances with a state-of-the-art predictor is carried out. The results obtained show that the PHEV makes it possible to minimize the Root Mean Square Error (RMSE) from 28.63 mW to 19.52 mW. A model of energy dissipation in IWS, considering the Internet of Things’ requirements, was established. The model is based on Long-Range (LoRa)/Long-Range Communication Wide Area Network (LoRaWan). The amount of data transmitted is then maximized according to the expected energy harvest rate by setting up a Maximization Data Size Protocol (MDSP). The proposed method makes it possible to ensure an acceptable QoS without resorting to reconfigurable circuits, which are sometimes bulky for miniature devices such as the IWS.


2005 ◽  
pp. 255-278
Author(s):  
James T Walker ◽  
Susanne Surman ◽  
Jana Jass

2020 ◽  
Vol 26 (21-22) ◽  
pp. 2026-2036
Author(s):  
Xiangdong Liu ◽  
Haikuo Liu ◽  
Changkun Du ◽  
Pingli Lu ◽  
Dongping Jin ◽  
...  

The objective of this work was to suppress the vibration of flexible structures by using a distributed cooperative control scheme with decentralized sensors and actuators. For the application of the distributed cooperative control strategy, we first propose the multiple autonomous substructure models for flexible structures. Each autonomous substructure is equipped with its own sensor, actuator, and controller, and they all have computation and communication capabilities. The primary focus of this investigation was to illustrate the use of a distributed cooperative protocol to enable vibration control. Based on the proposed models, we design two novel active vibration control strategies, both of which are implemented in a distributed manner under a communication network. The distributed controllers can effectively suppress the vibration of flexible structures, and a certain degree of interaction cooperation will improve the performance of the vibration suppression. The stability of flexible systems is analyzed by the Lyapunov theory. Finally, numerical examples of a cantilever beam structure demonstrate the effectiveness of the proposed methods.


2015 ◽  
Vol 9 (4) ◽  
pp. 425-435 ◽  
Author(s):  
Berend Denkena ◽  
◽  
Martin Eckl ◽  
Thomas Lepper

Due to rising energy requirements, the use of low-weight materials is becoming more important, especially in aerospace and automotive engineering. Because of their high strength-to-weight ratio, carbon fiber reinforced plastics (CFRP) are increasingly replacing metals. These materials are usually machined by milling operations. Their main problems are high tool wear, thermal damage, and surface integrity. This paper presents a machine concept and control strategy to substitute milling with laser cutting. Because a high, constant-trajectory velocity is required during laser cutting operations, a highly dynamic machine tool is needed. Conventional machine tools requiring large workspaces are inertial and therefore unsuitable for this task. Thus, a portal machine concept was investigated with an additional laser scanner and lightweight moving components. To increase path accuracy, two control strategies were implemented and analyzed in a multi-body simulation. One approach is to use a frequency-separating filter, while the second is based on estimation of tool center point positioning error using a Kalman filter. An acceleration sensor located near the tool center point (TCP) or the drive current signal can be used as input for the Kalman filter. Both input signals are investigated and compared in this paper. Results presented in this paper show that with these control strategies, highly dynamic trajectories can be realized with high precision.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983268
Author(s):  
Denghao Wu ◽  
Zhibing Zhu ◽  
Yun Ren ◽  
Yunqing Gu ◽  
Jiegang Mou ◽  
...  

This article presents a new approach aiming to reducing pump vibration by modifying its baseplate structure. The finite element models of the vertical pump were established and validated by the experimental impact test. The natural frequencies of pump were mapped in both experimental and numerical methods. The weak stiffness of the baseplate was identified as the root cause for the pump vibration. A topology optimization was used for enhancing the stiffness of baseplate and controlling its weight. The new baseplate was designed according to the inputs from optimization results and manufactured by the casting method. Both the vibration tests and the numerical simulations were carried out to investigate the vibration behaviors of the optimized pump model. The differences of vibration characteristics between original and optimized pumps were evaluated using 1/3 octave-band filter technique. Results show that the vibration was suppressed, and the resonance at 31.5 Hz was eliminated using the optimized baseplate. In particular, the maximum vibration amplitude of the vertical pump was reduced from 4.05 to 1.75 mm/s at the low flow rate condition. It was experimentally confirmed that the vibration amplitude of the optimized model complies with the requirements of the International Organization for Standardization standard and ensures the pump can operate stable for a long time.


2016 ◽  
Vol 10 (6) ◽  
pp. 851-851
Author(s):  
Editorial Office

The seventh Best Paper Award 2016 ceremony was held at Guimaraes, Portugal, August 24, 2016 in the 66th CIRP General Assembly, and the second Best Review Award 2016 ceremony was held at Kasumigaseki, Tokyo, September 23, 2016, attended by the winners and IJAT committee members who took part in the selection process. The Best Paper was severely selected from among 85 papers published in Vol.9 (2015) and the Best Review was selected from 10 reviews published from 2013 to 2016. The Best Paper Award winner was given a certificate with a nearly US$1,000 honorarium and the Best Review Award winner was given a certificate with commemorative shield. We congratulate the winner and sincerely wish for their future success.   The Best Paper Award 2016 Advanced Control Strategies for Active Vibration Suppression in Laser Cutting Machines by Berend Denkena, Martin Eckl, and Thomas Lepper Int. J. of Automation Technology Vol.9 No.4, pp. 425-435, July, 2015   The Best Review Award 2016 In-Process and On-Machine Measurement of Machining Accuracy for Process and Product Quality Management: A Review by Yasuhiro Takaya Int. J. of Automation Technology Vol.8 No.1 pp. 4-19, January, 2014


Sign in / Sign up

Export Citation Format

Share Document