scholarly journals Integrated topology optimization for vibration suppression in a vertical pump

2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983268
Author(s):  
Denghao Wu ◽  
Zhibing Zhu ◽  
Yun Ren ◽  
Yunqing Gu ◽  
Jiegang Mou ◽  
...  

This article presents a new approach aiming to reducing pump vibration by modifying its baseplate structure. The finite element models of the vertical pump were established and validated by the experimental impact test. The natural frequencies of pump were mapped in both experimental and numerical methods. The weak stiffness of the baseplate was identified as the root cause for the pump vibration. A topology optimization was used for enhancing the stiffness of baseplate and controlling its weight. The new baseplate was designed according to the inputs from optimization results and manufactured by the casting method. Both the vibration tests and the numerical simulations were carried out to investigate the vibration behaviors of the optimized pump model. The differences of vibration characteristics between original and optimized pumps were evaluated using 1/3 octave-band filter technique. Results show that the vibration was suppressed, and the resonance at 31.5 Hz was eliminated using the optimized baseplate. In particular, the maximum vibration amplitude of the vertical pump was reduced from 4.05 to 1.75 mm/s at the low flow rate condition. It was experimentally confirmed that the vibration amplitude of the optimized model complies with the requirements of the International Organization for Standardization standard and ensures the pump can operate stable for a long time.

Author(s):  
Isao Tomita ◽  
Seiichi Ibaraki ◽  
Masato Furukawa ◽  
Kazutoyo Yamada

Recently, the application of turbochargers is increasing because they are effective in improving fuel consumption of engines. One of the most important turbocharger characteristics is compressor operating range, since it has been used in various driving patterns with the advent of variable geometry turbochargers. Owing to the complicated phenomena such as rotating stall occurring at low flow rate condition, flow analysis is very difficult and details of flow structure have not been fully understood for a long time since the early 1970’s. In this study, two compressors with different operating range width were investigated with experimental and computational flow analysis. In the compressor with narrow operating range, the amplitude of blade passing pressure fluctuation decreases rapidly and rotating stall occurs near surging. On the other hand, in the compressor with wide operating range, the blockage by the tip leakage vortex breakdown play a role in stabilizing the flow filed and keeping up a high performance even at low flow rates.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Isao Tomita ◽  
Seiichi Ibaraki ◽  
Masato Furukawa ◽  
Kazutoyo Yamada

Recently, the application of turbochargers is increasing because they are effective in improving fuel consumption of engines. One of the most important turbocharger characteristics is compressor operating range, since it has been used in various driving patterns with the advent of variable geometry turbochargers. Owing to the complicated phenomena, such as rotating stall occurring at low flow rate condition, flow analysis is very difficult and details of flow structure have not been fully understood for a long time since the early 1970s. In this study, two compressors with different operating range width were investigated with experimental and computational flow analysis. In the compressor with narrow operating range, the amplitude of blade passing pressure fluctuation decreases rapidly and rotating stall occurs near surging. On the other hand, in the compressor with wide operating range, the blockage by the tip leakage vortex breakdown play a role in stabilizing the flow field and keeping up a high performance even at low flow rates.


Legal Concept ◽  
2019 ◽  
pp. 107-115
Author(s):  
Maxim Permyakov

Introduction: despite the fact that Russia is a country in which the majority of the population lives in apartment buildings, the institution of condominium ownership is one of the least developed, both in doctrinal and practical terms, in connection with which the theoretical and practical difficulties arise in the domestic legal order. The solution of such problems is impossible without the search for the root cause, which is the lack of choice of the form of organization of the legal institution, so that the legal regulation cannot be harmonious. Purpose: based on the study of the formation, evolution and unification of the institution of law in foreign countries, to address the problems of the domestic institution of condominium ownership. Methods: the methodological framework for this study is a set of methods of scientific knowledge, among which the main ones are the methods of specific historical, historical and comparative, social and legal, as well as the methods of analysis and synthesis. Results: the prerequisites for the emergence of condominium ownership in classical civil law were: the limitation of land as a natural resource, as well as capital for individual construction. The institution of condominium ownership is approved in the countries of continental law in two forms: “real” and “unreal”. In Russia, due to the lack of a long time of progressive development of property law, this institution was formed without taking into account its classical prerequisites, within the framework of privatization processes, which led to the emergence of the problems which are atypical for the European law and order. Conclusions: the domestic legislation tends to the organization of the institution of condominium ownership in the “real” form; however, the modern interpretation of this form entails many legal problems, which clearly indicates the need for its reform.


2020 ◽  
Vol 10 (4) ◽  
pp. 1548 ◽  
Author(s):  
Shenyan Chen ◽  
Zihan Yang ◽  
Minxiao Ying ◽  
Yanwu Zheng ◽  
Yanjie Liu ◽  
...  

The traditional series-type satellite vibration suppression scheme significantly decreases satellite frequency, which leads to difficulty in controlling the amplitude. In the present work, a new parallel viscous damping scheme is adopted on the Payload Adaptor Fitting (PAF), which aims to integrate a load-bearing design and vibration reduction. The vibration amplitude and weight are the most important design requirements of the damping system. The Finite Element (FE) model of PAF was established. Through a series of analyses, the appropriate number and coefficient of dampers were determined. The damping force was calculated according to the damping coefficient and the relative velocity between the two ends of the damper. Based on the damping force and the installation dimensions, the damping rod was designed. The force–velocity test was carried out on the damping rod prototype, which showed its performance satisfies the requirements. With the topology optimization and sizing optimization technology, the light-weight supports were designed and manufactured. One damping rod and two supports were assembled as one set of dampers. Eight sets of dampers were installed on the PAF. Vibration tests were conducted on the damping state PAF. The results showed that the proposed system is effective at suppressing vibration and maintaining stiffness simultaneously.


Author(s):  
Taichi Matsuoka

Authors have proposed a new type of vibration suppression device that utilizes variable inertia mass by fluid which acts as a series inertia mass. The series inertia mass is proportional to not only square of a ratio between a diameter of a piston cylinder and a by-pass pipe, and also a density of the fluid. The resisting force characteristics in case of water or turbine oil were measured. To confirm the proposed theory and investigate effects of vibration control, vibration tests of frequency response and seismic response of one-degree-of-freedom system with the test device were carried out. The experimental results were compared with the calculated results, and the effects of vibration suppression are confirmed experimentally and theoretically. In this paper, in order to derive the effect of a variable inertia mass by using a magnet-rheological fluid, resisting force characteristics of the test device are measured in several cases of magnetic field. The orifice of the by-pass pipe can be changed in virtual, since some rare-earth magnets are installed around the by-pass pipe. It can be seen from experimental results that the inertia force is increasing as stronger magnetic fields. It is pointed out that the variable inertia mass can be derived since clustered magnetic particles in the by-pass pipe act as a virtual orifice under strong magnetic field. The relation between magnetic flux and variable inertia mass are estimated experimentally.


2018 ◽  
Vol 2018.31 (0) ◽  
pp. 291
Author(s):  
Takuma ENDO ◽  
Hiroya HOSHIBA ◽  
Junji KATO ◽  
Takashi KYOYA

2019 ◽  
Vol 25 (2) ◽  
pp. 417-426 ◽  
Author(s):  
Kangjie Cheng ◽  
Yunfeng Liu ◽  
Chunyan Yao ◽  
Wenquan Zhao ◽  
Xu Xu

Purpose The purpose of this study is to obtain a titanium mandibular implant that possesses a personalized external shape for appearance recovery, a supporting structure for physiological loading and numerous micro-pores for accelerating osseointegration. Design/methodology/approach A three-dimensional intact mandibular model of a beagle dog was created from cone-beam computerized tomography scans. A segment of the lower jaw bone was resected and replaced by a personalized implant with comprehensive structures including a customized external shape, supporting structures and micro-pores, which were designed by topology optimization. Then with FEM analysis, the stress, displacement distribution and compliance of the designed implant were compared with the non-optimized model. The weight of the optimized implant that was fabricated by SLM with titanium alloy powder was measured and contrasted with the predicted non-optimized model for evaluating the viability of the design. Findings The FEM results showed the peaks of von Mises stress and displacement on the optimized implant were much lower than those of the implant without optimization. With topology optimization, the compliance of the implant decreased significantly by 53.3 per cent, and a weight reduction of 37.2 per cent could be noticed. Originality/value A design strategy for personalized implant, with comprehensive structures and SLM as the fabrication method, has been developed and validated by taking a canine mandible as the case study. With comprehensive structures, the implant presented good biomechanical behaviors thanks to the most appropriate supporting structures obtained by optimal design. The topological optimal design combined with SLM printing proved to be an effective method for the design and fabrication of personalized implant with complex structures.


Sign in / Sign up

Export Citation Format

Share Document