A novel model-based approach for resistance estimation using rise time and sensorless position control of sub-millimetre shape memory alloy helical spring actuator

2017 ◽  
Vol 29 (6) ◽  
pp. 1050-1064 ◽  
Author(s):  
M Sreekanth ◽  
Abraham T Mathew ◽  
R Vijayakumar

Shape memory alloy shows considerable strain during heating and cooling. This effect is due to its phase transformation with temperature. Due to this property, shape memory alloys can be deployed for physical actuation in place of conventional actuators in bio-medical and bio-mimicking robots. Sub-millimetre diameter shape memory alloy wires wound as helical springs are also used for this purpose. Due to their small size, it is difficult to use sensors for temperature or displacement measurements of shape memory alloy springs. This article attempts to demonstrate that the rise time of the current through a sub-millimetre diameter shape memory alloy helical spring is directly proportional to its displacement. To characterize the rise time–displacement hysteresis, a constant current drive with overcurrent protection is developed. The data generated are utilized to implement an open-loop sensorless control. A method to estimate the resistance from the rise time is proposed with which the temperature of the shape memory alloy during actuation can be obtained. The design avoids using an analogue-to-digital converter for the direct measurement of voltage and current for measuring the resistance variation in the shape memory alloy under actuation. This helps in the development of a new sensorless control using only the digital Input/Output pins of a microcontroller/microprocessor.

Author(s):  
Hari N Bhargaw ◽  
B A Botre ◽  
Samarth Singh ◽  
SAR Hashmi ◽  
SA Akabar ◽  
...  

Abstract This work presents the development of a precise, constant heating mechanism for an antagonistic shape memory alloy (SMA) actuator. The actuator was developed using a pair of SMA wires arranged in an antagonistic configuration. SMA possesses a unique phase-dependent, resistance variation property which is called self-sensing. This phenomenon is observed during thermal phase transition. A constant heating current was employed to measure combined differential resistance (ΔR) which provides insignificant hysteresis and linear relationship with displacement. ΔR eventually helps to determine the present position of the actuator for sensorless feedback control. The aim is to remove additional external sensors, reducing actuator footprint and interface complexity using the proposed study. The performance analysis of the actuator was evaluated under constant current by the tracking trajectory of reference signals. The tracking results confirmed the improvement in operating bandwidth by a reduction in displacement. The heating module mainly consisted of a low pass filter, operational amplifier with a current sense feedback mechanism that regulates the heating current in proportion to PWM signals. The result shows a significant 21% variation in the observed value of ΔR (1.200 to 0.254Ω) between the major-minor loops. The study confirms linearity and maintains similarity by highest correlation 0.9508 during open-loop, which further improves to 0.9891 in close feedback reference tracking with an error band ±0.05mm.


Author(s):  
Ermira Junita Abdullah ◽  
Josu Soriano ◽  
Iñaki Fernández de Bastida Garrido ◽  
Dayang Laila Abdul Majid

2006 ◽  
Vol 17 (5) ◽  
pp. 381-392 ◽  
Author(s):  
Hashem Ashrafiuon ◽  
Mojtaba Eshraghi ◽  
Mohammad H. Elahinia

Author(s):  
Alexander Czechowicz ◽  
Sven Langbein

Shape memory alloys (SMA) are thermally activated smart materials. Due to their ability to change into a previously imprinted actual shape through the means of thermal activation, they are suitable as actuators for mechatronical systems. Despite of the advantages shape memory alloy actuators provide, these elements are only seldom integrated by engineers into mechatronical systems. Reasons are the complex characteristics, especially at different boundary conditions and the missing simulation- and design tools. Also the lack of knowledge and empirical data are a reason why development projects with shape memory actuators often lead to failures. This paper deals with the dynamic properties of SMA-actuators (Shape Memory Alloy) — characterized by their rate of heating and cooling procedures — that today can only be described insufficiently for different boundary conditions. Based on an analysis of energy fluxes into and out of the actuator, a numerical model of flat-wire used in a bow-like structure, implemented in MATLAB/SIMULINK, is presented. Different actuation parameters, depending on the actuator-geometry and temperature are considered in the simulation in real time. Additionally this publication sums up the needed empirical data (e.g. fatigue behavior) in order to validate the numerical two dimensional model and presents empirical data on SMA flat wire material.


2015 ◽  
Vol 1115 ◽  
pp. 454-457 ◽  
Author(s):  
Alala M. Ba Hamid ◽  
Mohatashem R. Makhdoomi ◽  
Tanveer Saleh ◽  
Moinul Bhuiyan

In Malaysia, every year approximately 40000 people suffer from stroke and many of them become immobilized as an after effect. Rehabilitation robotics to assist disabled people has drawn significant attention by the researchers recently. This project also aims to contribute to this field. This paper presents a Shape Memory Alloy (SMA) actuated wearable assistive robotic hand for grasping. The proposed design is compact and sufficiently light to be used as an assistive hand. It is a joint less structure, has the potential because the human skeleton and joint replace the robot’s conventional structure. This design has been implemented on index and thumb fingers to enable grasping. Shape memory alloy springs and bias force mechanism are used for purpose of hand’s flexion and extension. This paper describes the mechatronic design of the wearable hand, experimental study of actuation unit and sensory system. Open loop experiments are conducted to understand the hand characterization and grip force provided by index finger. Current, temperature, extension and contraction of shape memory alloy springs are reported. This mechanism requires approximately 2A current for the SMA to actuate which provides maximum of 1.6N of gripping force. Conducted experiments show promising results that encourage further developments.


2021 ◽  
Vol 71 (1) ◽  
pp. 94-101
Author(s):  
M. Muralidharan ◽  
I.A. Palani

In this paper, a shape memory alloy (SMA) actuated subcarangiform robotic fish has been demonstrated using a spring based propulsion mechanism. The bionic robotic fish developed using SMA spring actuators and light weight 3D printed components can be employed for under water applications. The proposed SMA spring-based design without conventional motor and other rotary actuators was able to achieve two-way shape memory effect and has reproduced the subcarangiform locomotion pattern. The positional kinematic model has been developed and the dynamics of the proposed mechanism were analysed and simulated using Automated Dynamic Analysis of Mechanical Systems (ADAMS). An open loop Arduino-relay based switching control has been adopted to control the periodic actuation of the SMA spring mechanism. The undulation of caudal fin in air and water medium has been analysed. The caudal fin and posterior body of the developed fish prototype have taken part in undulation resembling subcarangiform locomotion pattern and steady swimming was achieved in water with a forward velocity of 24.5 mm/s. The proposed design is scalable, light weight and cost effective which may be suitable for underwater surveillance application.


Sign in / Sign up

Export Citation Format

Share Document