Performance analysis of constant current heated antagonistic Shape Memory Alloy actuator using a differential resistance measurement technique

Author(s):  
Hari N Bhargaw ◽  
B A Botre ◽  
Samarth Singh ◽  
SAR Hashmi ◽  
SA Akabar ◽  
...  

Abstract This work presents the development of a precise, constant heating mechanism for an antagonistic shape memory alloy (SMA) actuator. The actuator was developed using a pair of SMA wires arranged in an antagonistic configuration. SMA possesses a unique phase-dependent, resistance variation property which is called self-sensing. This phenomenon is observed during thermal phase transition. A constant heating current was employed to measure combined differential resistance (ΔR) which provides insignificant hysteresis and linear relationship with displacement. ΔR eventually helps to determine the present position of the actuator for sensorless feedback control. The aim is to remove additional external sensors, reducing actuator footprint and interface complexity using the proposed study. The performance analysis of the actuator was evaluated under constant current by the tracking trajectory of reference signals. The tracking results confirmed the improvement in operating bandwidth by a reduction in displacement. The heating module mainly consisted of a low pass filter, operational amplifier with a current sense feedback mechanism that regulates the heating current in proportion to PWM signals. The result shows a significant 21% variation in the observed value of ΔR (1.200 to 0.254Ω) between the major-minor loops. The study confirms linearity and maintains similarity by highest correlation 0.9508 during open-loop, which further improves to 0.9891 in close feedback reference tracking with an error band ±0.05mm.

2017 ◽  
Vol 29 (6) ◽  
pp. 1050-1064 ◽  
Author(s):  
M Sreekanth ◽  
Abraham T Mathew ◽  
R Vijayakumar

Shape memory alloy shows considerable strain during heating and cooling. This effect is due to its phase transformation with temperature. Due to this property, shape memory alloys can be deployed for physical actuation in place of conventional actuators in bio-medical and bio-mimicking robots. Sub-millimetre diameter shape memory alloy wires wound as helical springs are also used for this purpose. Due to their small size, it is difficult to use sensors for temperature or displacement measurements of shape memory alloy springs. This article attempts to demonstrate that the rise time of the current through a sub-millimetre diameter shape memory alloy helical spring is directly proportional to its displacement. To characterize the rise time–displacement hysteresis, a constant current drive with overcurrent protection is developed. The data generated are utilized to implement an open-loop sensorless control. A method to estimate the resistance from the rise time is proposed with which the temperature of the shape memory alloy during actuation can be obtained. The design avoids using an analogue-to-digital converter for the direct measurement of voltage and current for measuring the resistance variation in the shape memory alloy under actuation. This helps in the development of a new sensorless control using only the digital Input/Output pins of a microcontroller/microprocessor.


Author(s):  
Edilberto Alves de Abrantes Júnior ◽  
Augusto Figueiredo ◽  
Carlos Jose de Araujo ◽  
Raimundo Duarte

2015 ◽  
Vol 1115 ◽  
pp. 454-457 ◽  
Author(s):  
Alala M. Ba Hamid ◽  
Mohatashem R. Makhdoomi ◽  
Tanveer Saleh ◽  
Moinul Bhuiyan

In Malaysia, every year approximately 40000 people suffer from stroke and many of them become immobilized as an after effect. Rehabilitation robotics to assist disabled people has drawn significant attention by the researchers recently. This project also aims to contribute to this field. This paper presents a Shape Memory Alloy (SMA) actuated wearable assistive robotic hand for grasping. The proposed design is compact and sufficiently light to be used as an assistive hand. It is a joint less structure, has the potential because the human skeleton and joint replace the robot’s conventional structure. This design has been implemented on index and thumb fingers to enable grasping. Shape memory alloy springs and bias force mechanism are used for purpose of hand’s flexion and extension. This paper describes the mechatronic design of the wearable hand, experimental study of actuation unit and sensory system. Open loop experiments are conducted to understand the hand characterization and grip force provided by index finger. Current, temperature, extension and contraction of shape memory alloy springs are reported. This mechanism requires approximately 2A current for the SMA to actuate which provides maximum of 1.6N of gripping force. Conducted experiments show promising results that encourage further developments.


2021 ◽  
Vol 71 (1) ◽  
pp. 94-101
Author(s):  
M. Muralidharan ◽  
I.A. Palani

In this paper, a shape memory alloy (SMA) actuated subcarangiform robotic fish has been demonstrated using a spring based propulsion mechanism. The bionic robotic fish developed using SMA spring actuators and light weight 3D printed components can be employed for under water applications. The proposed SMA spring-based design without conventional motor and other rotary actuators was able to achieve two-way shape memory effect and has reproduced the subcarangiform locomotion pattern. The positional kinematic model has been developed and the dynamics of the proposed mechanism were analysed and simulated using Automated Dynamic Analysis of Mechanical Systems (ADAMS). An open loop Arduino-relay based switching control has been adopted to control the periodic actuation of the SMA spring mechanism. The undulation of caudal fin in air and water medium has been analysed. The caudal fin and posterior body of the developed fish prototype have taken part in undulation resembling subcarangiform locomotion pattern and steady swimming was achieved in water with a forward velocity of 24.5 mm/s. The proposed design is scalable, light weight and cost effective which may be suitable for underwater surveillance application.


Author(s):  
Hussein F. M. Ali ◽  
Youngshik Kim

Abstract In this paper, we developed two degree of freedom shape memory alloy (SMA) actuator using SMA springs. This module can be applied easily to various applications: device holder, artificial finger, grippes, fish robot, and many other biologically inspired applications, where small size and small wight of the actuator are very critical. This actuator is composed of two sets of SMA springs: one set is for the rotation around the X axis (roll angle) and the other set is for the rotation around the Y axis (pitch angle). Each set contains two elements: one SMA spring and one antagonistic SMA spring. We used an inertia sensor (IMU) and two potentiometers for angles feedback. The SMA actuator system is modeled mathematically and then tested experimentally in open-loop and closed-loop control. We designed and experimentally tuned a proportional integrator derivative (PID) controller to follow the set points and to track the desired trajectories. The main goal of the presented controller is to control roll and pitch angles simultaneously in order to satisfy set points and trajectories within the work space. The experimental results show that the two degree of freedom SMA actuator system follows the desired setpoints with acceptable rise time and overshoot.


1997 ◽  
Vol 200 (9) ◽  
pp. 1383-1402 ◽  
Author(s):  
R Kittmann

An adaptive gain control system of a proprioceptive feedback system, the femur­tibia control loop, is investigated. It enables the joint control loop to work with a high gain but it prevents instability oscillations. In the inactive stick insect, the realisation of specific changes in gain is described for tibial torque, for extensor tibiae muscle force and for motoneuronal activity. In open-loop experiments, sinusoidal stimuli are applied to the femoral chordotonal organ (fCO). Changes in gain that depend on fCO stimulus parameters (such as amplitude, frequency and repetition rate), are investigated. Furthermore, spontaneous and touch-induced changes in gain that resemble the behavioural state of the animal are described. Changes in gain in motoneurones are always realised as changes in the amplitude of modulation of their discharge frequency. Nevertheless, depending on the stimulus situation, two different mechanisms underlie gain changes in motoneurones. (i) Changes in gain can be based on changes in the strength of the sensorimotor pathways that transmit stimulus-modulated information from the fCO to the motoneurones. (ii) Changes in gain can be based on changes in the mean activity of a motoneurone by means of its spike threshold: when, during the modulation, the discharge of a motoneurone is inhibited for part of the stimulus cycle, then a change in mean activity subsequently causes a change in modulation amplitude and gain. A new neuronal mechanism is described that helps to compensate the low-pass filter characteristics of the muscles by an increased activation, especially by a sharper distribution of spikes in the stimulus cycle at high fCO stimulus frequencies.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5173 ◽  
Author(s):  
Jorge Pérez-Bailón ◽  
Belén Calvo ◽  
Nicolás Medrano

This paper presents a fully integrated Gm–C low pass filter (LPF) based on a current steering Gm reduction-tuning technique, specifically designed to operate as the output stage of a SoC lock-in amplifier. To validate this proposal, a first-order and a second-order single-ended topology were integrated into a 1.8 V to 0.18 µm CMOS (Complementary Metal-Oxide-Semiconductor) process, showing experimentally a tuneable cutoff frequency that spanned five orders of magnitude, from tens of mHz to kHz, with a constant current consumption (below 3 µA/pole), compact size (<0.0140 mm2/pole), and a dynamic range better than 70 dB. Compared to state-of-the-art solutions, the proposed approach exhibited very competitive performances while simultaneously fully satisfying the demanding requirements of on-chip portable measurement systems in terms of highly efficient area and power. This is of special relevance, taking into account the current trend towards multichannel instruments to process sensor arrays, as the total area and power consumption will be proportional to the number of channels.


2015 ◽  
Vol 137 (1) ◽  
Author(s):  
Jeremy Kolansky ◽  
Pablo Tarazaga ◽  
O. John Ohanian,

Shape memory alloys (SMAs) are capable linear actuators. This research demonstrates the capabilities of SMA wires for the control of a pivot actuator. The wires impart opposing forces to control the motion of the pivot, and their deformation lengths are used to control the angle of rotation. The performance of the actuator is demonstrated through the tracking of a trajectory. Several effects that are important to the behavior of the actuator are also investigated. These are the block force generation of SMA wires for various temperatures and cooling strategies, and the open-loop response of the system.


2014 ◽  
Vol 936 ◽  
pp. 2230-2234
Author(s):  
Ya Ping Yu ◽  
Hui Zhao ◽  
Yuan Liu ◽  
Ren Jie Yang ◽  
Gui Mei Dong ◽  
...  

This paper designed a range of 0.1 ~ 250 kHz sine wave sweeping constant current source, which sine wave generator based on FPGA chip and DDS technology, the desired sine wave frequency was obtained by controlling the frequency control words. Low-pass filter circuit was realized by using the LTC1560-1, conversion circuit from the voltage to the current was consisted of a Howland current pump. The constant current source shows a good spectral impedance purity and amplitude.


Sign in / Sign up

Export Citation Format

Share Document