Analysis on enhancing the sensing behavior of ionic polymer metal composite based sensors

Author(s):  
J Sakthi Swarrup ◽  
Ranjan Ganguli ◽  
Giridhar Madras

In this paper, an in-depth analysis of IPMC (ionic polymer metal composite) as sensors is performed, motivated by application to flapping wing micro air vehicles. The effect of water uptake for different IPMC samples reveals a correlation between IPMC metal content and water uptake. The effect of introducing a mass to the end of High-frequency IPMC (HFI ∼ 20.9 Hz) sensor shows an improvement in the IPMC sensing behavior, whereas, for the Low-frequency IPMC (LFI ∼ 8.9 Hz) sensor, there is a reverse trend. Gold (Au) coating on an HFI sensor results in a decrease in resonant frequency. Different mass loaded on the Au coated HFI beams reveals that the pre-bending by adding end mass to HFI sensor is beneficial up to a specific mass level, after which the sensing voltage decreases. The optimized mass loading for the Au coated HFI is determined.

2013 ◽  
Vol 461 ◽  
pp. 323-329
Author(s):  
Jie Ru ◽  
Min Yu ◽  
Qing Song He ◽  
Bao Lei Wang ◽  
Zhen Dong Dai

Ionic polymer metal composite actuators (IPMCs), a new kind of smart material, have taken much attention as suitable candidates for the next generation actuators, micro-electromechanical systems, medical devices and micro air vehicles. In this paper, a new kind of IPMCs was developed by incorporating sulfonated poly (styrene-co-maleic anhydride) (SSMA) into the Nafion structure to overcome some of the major drawbacks of traditional electro-active polymers. The results show that the ion exchange capacity and water uptake ratio of the SSMA-Nation membrane increased dramatically. Compared with general IPMCs, the maximum bending displacement and the maximum blocking force of the SSMA-reinforced IPMCs improved greatly: the 1 wt.% SSMA-IPMC exhibited the maximum bending displacement of 11 mm up to 1.4 times, while the 5 wt.% SSMA-IPMC exhibited the maximum blocking force of 26 mN up to 1.2 times.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Yang Zhao ◽  
Di Xu ◽  
Jiazheng Sheng ◽  
Qinglong Meng ◽  
Dezhi Wu ◽  
...  

During the last decades, the ionic polymer-metal composite (IPMC) received much attention because of its potential capabilities, such as large displacement and flexible bending actuation. In this paper, a biomimetic flapping air vehicle was proposed by combining the superiority of ionic polymer metal composite with the bionic beetle flapping principle. The blocking force was compared between casted IPMC and IPMC. The flapping state of the wing was investigated and the maximum displacement and flapping angle were measured. The flapping displacement under different voltage and frequency was tested. The flapping displacement of the wing and the support reaction force were measured under different frequency by experiments. The experimental results indicate that the high voltage and low frequency would get large flapping displacement.


2011 ◽  
Vol 17 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Mohammad Luqman ◽  
Jang-Woo Lee ◽  
Kwang-Kil Moon ◽  
Young-Tai Yoo

Author(s):  
Muhammad Farid ◽  
Zhao Gang ◽  
Tran Linh Khuong ◽  
Zhuang Zhi Sun ◽  
Naveed Ur Rehman ◽  
...  

Biomimetic is the field of engineering in which biological creatures and their functions are investigated and are used as the basis for the design and manufacturing of machines. Ionic Polymer Metal Composite (IPMC) is a smart material which has demonstrated a meaningful bending and tip force after the application of a low voltage. It is light-weighted, flexible, easily actuated, multi-directional applicable and requires simple manufacturing. Resultantly, IPMC has attracted scientists and researchers to analyze it further and consider it for any industrial and biomimetic applications. Presently, the research on IPMC is bi-directional oriented. A few groups of researchers are busy to find out the causes for the weaknesses of the material and to find out any remedy for them. The second class of scientists is exploring new areas of applications where IPMC material can be used. Although, the application zone of IPMC is ranging from micropumps diaphragms to surgical holding devices, this paper provides an overview of the IPMC application in biomimetic and biomedical field.


2009 ◽  
Vol 1190 ◽  
Author(s):  
Takuma Kobayashi ◽  
Takeshi Kuribayashi ◽  
Masaki Omiya

AbstractWe built up the way of fabricating IPMC actuator with palladium electrodes and we found that it showed large bending response than Au-plated IPMC actuator. An ionic polymer-metal composite (IPMC) consisting of a thin perfuorinated ionomer membrane, electrodes plated on both faces, undergoes large bending motion when a small electric field is applied across its thickness in a hydrated state. The characteristics of IPMC are ease of miniaturization, low density, and mechanical flexibility. Therefore, it is considered to have a wide range of applications from MEMS sensor to artificial muscle. However, there are problems on IPMC. First, its mechanical and electric characteristics have not been clarified because of the complex mechanism of the deformation. Second, it is high-priced because most of IPMC actuators use gold or platinum as electrodes. In order for IPMC actuator to be widely put to practical use, we should solve these problems. Hence, this research focuses on fabrication of IPMC actuator with palladium electrode, which is cheaper than gold or platinum, and evaluation of its mechanical properties such as its tip displacement. We fabricated IPMC consisting of a thin Nafion® membrane, which is the film with fluorocarbon back-bones and mobile cations, sandwiched between two thin palladium plates. The surface resistivity was 2.88±0.18Ω/sq., so it could be said to be enough small. Then, we observed its cross section by using FE-SEM. As a result, palladium plates were evenly coated and its thickness was about 30μm. Also, we carried out an actuation test for two kinds of IPMCs: one was fabricated by using Nafion®117 (thickness 183μm), the other was by Nafion®115 (thickness 127μm). In this test, the relationship between voltage (0˜4V) across its thickness and tip displacement for the cantilevered strip of the IPMC was measured. Then we found that IPMCs showed large bending motion under a low electric field. When Nafion®117 sample was subjected to voltage of 1.5V, the ratio of the tip displacement to the sample length was 0.35, which was lager bending than Au-plated IPMC actuator, whose ratio of the tip displacement to the sample length was 0.12 [1]. When Nafion®115 sample was applied to 1.5V, the ratio of the tip displacement to the sample length was 0.22. Then, we found that Nafion®117 bended in a larger way than Nafion®115. Reference [1]Sia Nemat-Nesser and Yongxian Wu,”Comparative experimental study of ionic polymer-metal composites with different backbone ionomers and in various cation forms”, Journal of Applied Physics,93,5255 (2003)


Sign in / Sign up

Export Citation Format

Share Document