Precision open-loop control of piezoelectric actuator

Author(s):  
Zhigang Nie ◽  
Yuguo Cui ◽  
Jun Huang ◽  
Yiqiang Wang ◽  
Tehuan Chen

Due to space constraints, some micro-assemblies and micro-operating systems cannot install sensors, so it is challenging to achieve closed-loop control. For this reason, a precision open-loop control strategy for piezoelectric actuators is proposed. Firstly, based on the PI model and the proposed threshold partition method, the hysteresis model of the piezoelectric actuator with rate-dependent and few operators is established. Then the hysteresis error of the piezoelectric actuator is compensated by the inverse model obtained. Secondly, the creep model of the logarithmic piezoelectric actuator with simple expression and few parameters is established. Then, a creep controller without demand inverse is designed to compensate for the creep error of the piezoelectric actuator. Finally, a ZVD (Zero Vibration Derivative) input shaping method with good robustness is given to eliminate the oscillation generated by the piezoelectric actuator under the action of the step signal. The experimental results show that the displacement error of piezoelectric actuator is reduced from −9.07 to 9.46 μm to −1.22 to 1.78 μm when the maximum displacement is 120 μm after hysteresis compensation; after creeping compensation, within the action time of the 1200 s, the displacement creep of the piezoelectric actuator was reduced from 5.5 μm before compensation to 0.3 μm; after the oscillation control, the displacement overshoot of the piezoelectric actuator is reduced to 0.6% of that before control.

Author(s):  
Jau-Liang Chen ◽  
Yan-Ming Chen

The purpose of this research is trying to design a 6 degree-of-freedom micro-precision positioning stage with monolithic mechanism. It is hoped that this stage can reach 10 μm strokes along linear axis and with rotational angle no less than 50 μrad. The dimension of this positioning stage should be less than 200 mm × 200 mm × 50 mm. By using flexure hinge and piezoelectric actuator, this stage can achieve nanometer resolution. From the experimental results, it is found that the stage can achieve a maximum displacement of 29.3 μm in X axis; 11.94 μm in Y axis; and 6.74 μm in Z axis. The stage can also achieve a maximum rotation of 405.41 μrad around Z axis; 57.18 μrad around X axis; and 63.72 μrad around Y axis. With open loop control, we have shown that the minimum step for the stage is 110 nm in X-axis; 45 nm in Y axis; and 30 nm in Z-axis.


2013 ◽  
Vol 11 (s2) ◽  
pp. S21202-321205 ◽  
Author(s):  
Geng Wang Geng Wang ◽  
Chunlin Guan Chunlin Guan ◽  
Hong Zhou Hong Zhou ◽  
Xiaojun Zhang Xiaojun Zhang ◽  
Changhui Rao Changhui Rao

2018 ◽  
Vol 38 (1) ◽  
pp. 23-28 ◽  
Author(s):  
Frederik Stefanski ◽  
Bartosz Minorowicz

Abstract This paper is focused on the open loop control of a piezoelectric tube actuator, hindered by a strong hysteresis. The actuator was distinguished with 22 % hysteresis, which hinders the positioning of piezoelectric actuator. One of the possible ways to solve this problem is application of an accurate analytical inversed model of the hysteresis in the control loop. In this paper generalized Prandtl-Ishlinskii model was used for both modeling and open loop control of the piezoelectric actuator. Achieved modeling error does not exceed max. 2.34 % of the whole range of tube deflection. Finally, the inverse hysteresis model was applied to the control line of the tube. For the same input signal (damped sine 0.2 Hz) as for the model estimation the positioning error was max. 4.6 % of the tube deflection. Additionally, for a verification reason three different complex harmonic functions were applied. For the verification functions, still a good positioning was obtained with positioning error of max.4.56 %, 6.75 %and5.6%of the tube deflection.


2013 ◽  
Vol 281 ◽  
pp. 141-145 ◽  
Author(s):  
Xuan Wang ◽  
Valérie Budinger ◽  
Yves Gourinat

Piezoelectric actuators exhibit creep behavior in open-loop operation, which may lead to unaffordable errors in high precision static positioning systems. An inversion-based compensation strategy by open-loop control is presented for reducing creep effect. The approach utilizes a nonlinear viscoelastic model to portray creep phenomenon, which consists of a linear spring, a nonlinear dashpot and a series of nonlinear Voigt elements. It is shown that for the presented creep model the step responses are very similar to the piezoelectric actuators. In order to compensate creep effect, a concept of voltage relaxation in piezoelectric actuators is proposed. And the voltage relaxation model tantamount to the inverse creep model is derived using a PID closed-loop control system. Experimental results prove that, by insertion of voltage relaxation model in open-loop operation, creep effect is attenuated markedly in piezoelectric actuators.


2007 ◽  
Vol 10-12 ◽  
pp. 652-656
Author(s):  
W.R. Jiang ◽  
Ze Sheng Lu

The hysteresis in piezoelectric actuator is the main factor that affects its displacement accuracy, the hysteresis model is set up by using the theory of preisach, and the research on open-loop control of piezoelectric actuator is carried out based on inverse preisach model. The result shows that the model can describe successfully the hysteresis in piezoelectric actuator, predict the displacement after a series of random voltage path perfectly, and improve the hysteresis of displacement effectively, decrease the nonlinear error of system, increase control precision. A new microactuator with high-resolution and large-stroke based on piezoelectric is presented, and the open-loop control is investigated based on inverse preisach model, its stroke is 300mm, the position accuracy is about 0.03μm, the displacement resolution is up to 0.02μm.


1998 ◽  
Author(s):  
C. Truman ◽  
Lenore McMackin ◽  
Robert Pierson ◽  
Kenneth Bishop ◽  
Ellen Chen

Sign in / Sign up

Export Citation Format

Share Document