Reply to Kawasaki et al Regarding “Nuclear Insulinoma-Associated Protein 1 Expression as a Marker of Neuroendocrine Differentiation in Neoplasms of the Breast”

2022 ◽  
pp. 106689692110701
Author(s):  
Mieke R. Van Bockstal ◽  
Christine Galant
2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Xue Lin ◽  
Yoshiaki Matsumoto ◽  
Tomomi Nakakimura ◽  
Kazuo Ono ◽  
Shigeaki Umeoka ◽  
...  

Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3159
Author(s):  
Helge Waldum

Malignant tumors are a consequence of genetic changes mainly occurring during cell division, sometimes with a congenital component. Therefore, accelerated cell divisions will necessarily predispose individuals, whether due to conditions of chronic cell destruction or hormonal overstimulation. It has been postulated that two genetic hits are necessary for the development of malignancy (Knudson). The correct view is probably that the number of genetic changes needed depends on the role the mutated genes have in proliferation and growth control. Hormones should accordingly be regarded as complete carcinogens. In this review based upon experience of gastric cancer where gastrin is central in the pathogenesis, it is argued that oxyntic atrophy—and not metaplasia as postulated by Correa—is the central precancer change in gastric mucosa. Moreover, the target cell of gastrin, the enterochromaffin-like (ECL) cell, is central in gastric carcinogenesis and most probably the cell of origin of gastric carcinomas of the diffuse type according to Lauren (a classification probable in accordance with biology). The distinction between adenocarcinomas and neuroendocrine carcinomas based upon a certain percentage of cancer cells with neuroendocrine differentiation is questioned. To make progress in the treatment of cancer, a correct classification system and knowledge of the pathogenesis are necessary.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Divya Bhagirath ◽  
Michael Liston ◽  
Theresa Akoto ◽  
Byron Lui ◽  
Barbara A. Bensing ◽  
...  

AbstractNeuroendocrine prostate cancer (NEPC), a highly aggressive variant of castration-resistant prostate cancer (CRPC), often emerges upon treatment with androgen pathway inhibitors, via neuroendocrine differentiation. Currently, NEPC diagnosis is challenging as available markers are not sufficiently specific. Our objective was to identify novel, extracellular vesicles (EV)-based biomarkers for diagnosing NEPC. Towards this, we performed small RNA next generation sequencing in serum EVs isolated from a cohort of CRPC patients with adenocarcinoma characteristics (CRPC-Adeno) vs CRPC-NE and identified significant dysregulation of 182 known and 4 novel miRNAs. We employed machine learning algorithms to develop an ‘EV-miRNA classifier’ that could robustly stratify ‘CRPC-NE’ from ‘CRPC-Adeno’. Examination of protein repertoire of exosomes from NEPC cellular models by mass spectrometry identified thrombospondin 1 (TSP1) as a specific biomarker. In view of our results, we propose that a miRNA panel and TSP1 can be used as novel, non-invasive tools to identify NEPC and guide treatment decisions. In conclusion, our study identifies for the first time, novel non-invasive exosomal/extracellular vesicle based biomarkers for detecting neuroendocrine differentiation in advanced castration resistant prostate cancer patients with important translational implications in clinical management of these patients that is currently extremely challenging.


Author(s):  
Terence W. Friedlander ◽  
Colin C. Pritchard ◽  
Himisha Beltran

Although biopsies of metastatic prostate cancer are rarely undertaken in the clinical setting, there is increasing interest in developing personalized approaches to therapy by taking into account the genetic and phenotypic changes in an individual tumor. Indeed, analysis of metastatic prostate tumors can predict sensitivity to agents that inhibit DNA repair and resistance to novel hormonal agents, such as abiraterone and enzalutamide, and identify phenotypic changes, such as neuroendocrine differentiation, that have important clinical implications. Although obtaining metastatic tumor tissue is necessary for this genomic and molecular profiling, knowing when to biopsy, selecting the appropriate metastatic lesion, and interpreting the results are major challenges facing clinicians today. In this article, we discuss the rationale for obtaining metastatic tumor tissue, review the bioinformatic approach to analyzing these specimens, discuss the timing and approach to solid and liquid tumor biopsies, review the challenges associated with obtaining and acting on clinically relevant results, and discuss opportunities for the future.


Sign in / Sign up

Export Citation Format

Share Document