Simulate and sense force exertions during virtual patient transfer tasks

Author(s):  
Ken Chen ◽  
Rebecca Widmayer ◽  
Karen B. Chen

Virtual reality (VR) is commonplace for training, yet simulated physical activities in VR do not require trainees to engage and contract the muscle groups normally engaged in physical lifting. This paper presents a muscle activity-driven interface to elicit the sensation of forceful, physical exertions when lifting virtual objects. Users contracted and attained predefined muscle activity levels that were calibrated to user-specific muscle activity when lifting the physical counterpart. The overarching goal is to engage the appropriate muscles, and thereby encourage and elicit behaviors normally seen in the physical environment. Activities of 12 key muscles were monitored using electromyography (EMG) sensors while they performed a three-part patient lifting task in a Cave Automatic Virtual Environment. Participants reported higher task mental loads and less physical loads for the virtual lift than the physical lift. Findings suggest the potential to elicit sensation of forceful exertion via EMG feedback but needed fine-tuning to offset perceived workload.

Author(s):  
Haerim Bak ◽  
Clive D’Souza ◽  
Gwanseob Shin

Physical demands of household carpet vacuuming and associated risks for musculoskeletal problems have received little attention although the level of muscle exertions is often assumed to be similar to that of occupational vacuuming. The aim of this study was to quantitatively assess the level of muscle activities of the upper extremity during carpeted floor vacuuming with household upright vacuum cleaners. Eighteen participants conducted four different carpet vacuuming tasks with two different cleaner models. Electromyography data from seven upper extremity muscles were collected. Median muscle activity ranged from 4.5% to 47.5% of the maximum voluntary contraction capacity for female participants and from 2.7% to 23.6% for male participants. Normalized muscle activity levels were significantly higher in women compared to men across tasks and muscle groups. Study results suggest that home vacuuming with upright vacuum cleaners is physically intensive work, especially for female users who are less physically capable.


2002 ◽  
Vol 16 (2) ◽  
pp. 92-96
Author(s):  
Tiina Ritvanen ◽  
Reijo Koskelo ◽  
Osmo H„nninen

Abstract This study follows muscle activity in three different learning sessions (computer, language laboratory, and normal classroom) while students were studying foreign languages. Myoelectric activity was measured in 21 high school students (10 girls, 11 boys, age range 17-20 years) by surface electromyography (sEMG) from the upper trapezius and frontalis muscles during three 45-min sessions. Root mean square (RMS) average from both investigated muscles was calculated. The EMG activity was highest in both muscle groups in the computer-aided session and lowest in the language laboratory. The girls had higher EMG activity in both investigated muscle groups in all three learning situations. The measured blood pressure was highest at the beginning of the sessions, decreased within 10 min, but increased again toward the end of the sessions. Our results indicate that the use of a computer as a teaching-aid evokes more constant muscle activity than the traditional learning situations. Since muscle tension can have adverse health consequences, more research is needed to determine optimal classroom conditions, especially when technical aids are used in teaching.


2014 ◽  
Vol 564 ◽  
pp. 644-649 ◽  
Author(s):  
Halim Isa ◽  
Rawaida ◽  
Seri Rahayu Kamat ◽  
A. Rohana ◽  
Adi Saptari ◽  
...  

In industries, manual lifting is commonly practiced even though mechanized material handling equipment are provided. Manual lifting is used to transport or move products and goods to a desired place.Improper lifting techniquescontribute to muscle fatigue and low back pain that can lead to work efficiency and low productivity.The objective of this study were to analyze muscle activity in the left and right Erector Spinae, and left and right Biceps Brachii of five female subjects while performing manual lifting taskwithdifferent load mass, lifting height and twist angle.The muscle activitywere measured and analyzed using surface electromyography (sEMG).This study found that the right Biceps Brachii, right and left Erector Spinae experienced fatigue while performingasymmetric lifting (twist angle = 90°) at lifting height of 75 cm and 140 cm with load mass of 5 kg and 10 kg. Meanwhile, the left Biceps Brachii experienced fatigue when the lifting task was set at lifting height of 75 cm, load mass of 5 kg and twist angle of 90°.The load mass and lifting height has a significant influence to Mean Power Frequency (MPF) for left Biceps Brachii, left and right Erector Spinae. This study concluded that reducing the load mass can increase the muscles performance which can extend the transition-to-fatigue stage in the left and right Biceps Brachii and Erector Spinae.


1997 ◽  
Vol 200 (13) ◽  
pp. 1881-1893 ◽  
Author(s):  
M Westneat ◽  
J Walker

Labriform locomotion is a widespread swimming mechanism in fishes during which propulsive forces are generated by oscillating the pectoral fins. We examined the activity of the six major muscles that power the pectoral fin of the bird wrasse Gomphosus varius (Labridae: Perciformes). The muscles studied included the fin abductors (arrector ventralis, abductor superficialis and abductor profundus) and the fin adductors (arrector dorsalis, adductor superficialis and adductor profundus). Our goals were to determine the pattern of muscle activity that drives the fins in abduction and adduction cycles during pectoral fin locomotion, to examine changes in the timing and amplitude of electromyographic (EMG) patterns with increases in swimming speed and to correlate EMG patterns with the kinematics of pectoral fin propulsion. EMG data were recorded from three individuals over a range of swimming speeds from 15 to 70 cm s-1 (1­4.8 TL s-1, where TL is total body length). The basic motor pattern of pectoral propulsion is alternating activity of the antagonist abductor and adductor groups. The downstroke is characterized by activity of the arrector ventralis muscle before the other abductors, whereas the upstroke involves nearly synchronous activity of the three adductors. Most EMG variables (duration, onset time, amplitude and integrated area) showed significant correlations with swimming speeds. However, the timing and duration of muscle activity are relatively constant across speeds when expressed as a fraction of the stride period, which decreases with increased velocity. Synchronous recordings of kinematic data (maximal abduction and adduction) with EMG data revealed that activity in the abductors began after maximal adduction and that activity in the adductors began nearly synchronously with maximal abduction. Thus, the pectoral fin mechanism of G. varius is activated by positive work from both abductor and adductor muscle groups over most of the range of swimming speeds. The adductors produce some negative work only at the highest swimming velocities. We combine information from pectoral fin morphology, swimming kinematics and motor patterns to interpret the musculoskeletal mechanism of pectoral propulsion in labrid fishes.


Author(s):  
Yuki Kurokawa ◽  
Satoshi Kato ◽  
Satoru Demura ◽  
Kazuya Shinmura ◽  
Noriaki Yokogawa ◽  
...  

BACKGROUND: Abdominal bracing is effective in strengthening the trunk muscles; however, assessing performance can be challenging. We created a device for performing abdominal trunk muscle exercises. The effectiveness of this device has not yet been evaluated or compared OBJECTIVE: We aimed to quantify muscle activity levels during exercise using our innovative device and to compare them with muscle activation during abdominal bracing maneuvers. METHODS: This study included 10 men who performed abdominal bracing exercises and exercises using our device. We measured surface electromyogram (EMG) activities of the rectus abdominis (RA), external oblique, internal oblique (IO), and erector spinae (ES) muscles in each of the exercises. The EMG data were normalized to those recorded during maximal voluntary contraction (%EMGmax). RESULTS: During the bracing exercise, the %EMGmax of IO was significantly higher than that of RA and ES (p< 0.05), whereas during the exercises using the device, the %EMGmax of IO was significantly higher than that of ES (p< 0.05). No significant difference was observed in the %EMGmax of any muscle between bracing exercises and the exercises using the device (p= 0.13–0.95). CONCLUSIONS: The use of our innovative device results in comparable activation to that observed during abdominal bracing.


2020 ◽  
Vol 91 (1) ◽  
pp. 26-31 ◽  
Author(s):  
Roope Sovelius ◽  
Maunu Mäntylä ◽  
Heini Huhtala ◽  
Juha Oksa ◽  
Rasmus Valtonen ◽  
...  

BACKGROUND: The aim of the study was to determine the characteristics of cervical muscle activity in different head movements when using helmet mounted display in air combat maneuvering.METHODS: Cervical EMG was measured with eight F/A-18 pilots using the Joint Helmet Mounted Cueing System (JHMCS) during air combat maneuvering. In-flight Gz acceleration and continuous head position were recorded. Muscular activity was compared between head movements in isolation and combined with torso movement. In addition, the effect of the direction of head movements and the use of head support of the ejection seat on muscle activity was determined.RESULTS: Muscular loading increased in the cervical flexors and extensors when using the torso during targeting beyond the field of vision in the neutral sitting posture; the difference was significant in the flexors, but activity levels were higher in the extensors. Cervical muscles are loaded to a lesser extent if the head is kept in a stable position during Gz loading. Muscular activity in the neck muscles was higher when the pilot was moving the head out of neutral posture rather than toward neutral posture. The use of the headrest as a support decreased muscle activity in the extensors, but resulted in higher activity in the flexor muscles.DISCUSSION: All analyzed conditions were significantly affected by an increase in Gz. An increase of muscle activity with torso movements is considered as a positive factor as it reflects maintained muscular support for the cervical spine. Presented results may be helpful when specific conditioning programs and cockpit ergonomics are developed for fighter pilots.Sovelius R, Mäntylä M, Huhtala H, Oksa J, Valtonen R, Tiitola L, Leino T. Head movements and neck muscle activity during air combat maneuvering. Aerosp Med Hum Perform. 2020; 91(1):26–31.


Sexual Health ◽  
2007 ◽  
Vol 4 (4) ◽  
pp. 285
Author(s):  
R. Sapsford

The pelvic floor muscles form the base of the abdominal cylinder and work in synergy with other muscles around the cylinder - the abdominal muscles and the diaphragm. Activity in each muscle group affects the others. Coordinated recruitment of these muscle groups is necessary for generation and maintenance of intra-abdominal pressure, postural support of the trunk, and during functional tasks such as lifting, coughing and nose blowing. Coordinated release of these groups is required for micturition, while defaecation may need activity in some muscles and release in others. Vaginismus and vulvodynia both have a component of over activity of the pelvic floor muscles which impairs normal function, though this over activity may only occur at the time of attempted penetration. Some of the physiological factors that contribute to this overactivity come from outside the pelvic floor muscle complex itself and can be ameliorated by understanding and management of these muscle synergies. An EMG study of muscle activity of the abdominal and pelvic floor muscles during a simulated body posturing for female sexual arousal will help to explain how the pelvic floor muscle over activity in vaginismus arises. Treatment programmes that have been used to successfully address these problems will be explained.


Author(s):  
Jaejin Hwang ◽  
Veera Aneesh Kuppam ◽  
Subhramanya Suryanarayana Raju Chodraju ◽  
Jie Chen ◽  
Jeong Ho Kim

This study systematically investigated the efficacy of commercially-available patient transfer devices (a slide sheet, slide board, air-assisted device, and conventional draw sheet) in reducing biomechanical exposures during standardized lateral patient transfer tasks. A repeated-measures laboratory study with 10 experienced caregivers (9 females and 1 male) was conducted to measure the muscle activity in the upper extremity (flexor digitorum superficialis, extensor digitorum communis, biceps, triceps, and trapezius) and low back (erector spinae), and hand pull force and during standardized lateral patient transfer tasks with four different commercially-available transfer devices. The results showed that there were significant differences between the transfer devices in muscle activity (p’s < 0.01) and hand pull force (p < 0.01). The air-assisted device showed the largest reduction of muscle activities and hand pull force. The slide board also showed lower muscle activities and hand full force as compared to the slide sheet and conventional draw sheet; however, limited differences in muscle activity and hand pull force were found between the slide sheet and conventional draw sheet. These findings indicate that the air-assisted device and slide board may be effective engineering controls to reduce the biomechanical exposures and associated injury risks in the upper extremity and low back among caregivers.


Sign in / Sign up

Export Citation Format

Share Document