Using a Binary Classification Approach to Assess the Accuracy of Hand Posture and Force Estimation with Machine Learning Models

Author(s):  
Mengcheng Wang ◽  
Chuan Zhao ◽  
Alan Barr ◽  
Suihuai Yu ◽  
Jay Kapellusch ◽  
...  

Recent studies have successfully reported the accuracy of using artificial neural networks to predict grip force in controlled settings. However, only relying on accuracy to evaluate the machine learning models may lead to overoptimistic results, especially on imbalanced datasets. The Matthews correlation coefficient (MCC) showed an advantage in capturing all the data characteristics in the confusion matrix. Therefore, a binary classification approach and the MCC value were introduced to assess the performance of previously proposed machine learning models. Our results show that the overall correlations ranging between 0.48 and 0.59 indicate a strong relationship between predictions and actual scenarios. The binary classification approach and the MCC values could be used for future performance comparison with other machine learning models.

2019 ◽  
Author(s):  
Javier de Velasco Oriol ◽  
Antonio Martinez-Torteya ◽  
Victor Trevino ◽  
Israel Alanis ◽  
Edgar E. Vallejo ◽  
...  

AbstractBackgroundMachine learning models have proven to be useful tools for the analysis of genetic data. However, with the availability of a wide variety of such methods, model selection has become increasingly difficult, both from the human and computational perspective.ResultsWe present the R package FRESA.CAD Binary Classification Benchmarking that performs systematic comparisons between a collection of representative machine learning methods for solving binary classification problems on genetic datasets.ConclusionsFRESA.CAD Binary Benchmarking demonstrates to be a useful tool over a variety of binary classification problems comprising the analysis of genetic data showing both quantitative and qualitative advantages over similar packages.


2021 ◽  
Author(s):  
Naoki Miyaguchi ◽  
Koh Takeuchi ◽  
Hisashi Kashima ◽  
Mizuki Morita ◽  
Hiroshi Morimatsu

Abstract Recently, research has been conducted to automatically control anesthesia using machine learning, with the aim of alleviating the shortage of anesthesiologists. In this study, we address the problem of predicting decisions made by anesthesiologists during surgery using machine learning; specifically, we formulate a decision making problem by increasing the flow rate at each time point in the continuous administration of analgesic remifentanil as a supervised binary classification problem. The experiments were conducted to evaluate the prediction performance using six machine learning models: logistic regression, support vector machine, random forest, LightGBM, artificial neural network, and long short-term memory (LSTM), using 210 case data collected during actual surgeries. The results demonstrated that when predicting the future increase in flow rate of remifentanil after 1 min, the model using LSTM was able to predict with scores of 0.659 for sensitivity, 0.732 for specificity, and 0.753 for ROC-AUC; this demonstrates the potential to predict the decisions made by anesthesiologists using machine learning. Furthermore, we examined the importance and contribution of the features of each model using shapley additive explanations—a method for interpreting predictions made by machine learning models. The trends indicated by the results were partially consistent with known clinical findings.


2021 ◽  
Vol 23 (08) ◽  
pp. 148-160
Author(s):  
Dr. V.Vasudha Rani ◽  
◽  
Dr. G. Vasavi ◽  
Dr. K.R.N Kiran Kumar ◽  
◽  
...  

Diabetes is one of the chronicdiseases in the world. Millions of people are suffering with several other health issues caused by diabetes, every year. Diabetes has got three stages such as type2, type1 and insulin. Curing of diabetes disease at later stages is practically difficult. Here in this paper, we proposed a DNN model and its performance comparison with some of the machine learning models to predict the disease at an earlystage based on the current health condition of the patient. An artificial neural network (ANN) is a predictive model designed to work the same way a human brain does and works better with larger datasets. Having the concept of hidden layers, neural networks work better at predictive analytics and can make predictions with more accuracy. Novelty of this work lies in integration of feature selection method used to optimize the Multilayer Perceptron (MLP) to reduce the number of required input attributes. The results achieved using this method and several conventional machines learning approaches such as Logistic Regression, Random Forest Classifier (RFC) are compared. The proposed DNN method is proved to show better accuracy than Machine learning models for early stage detection of diabetes. This paper work is applicable to clinical support as a tool for making predecisions by the doctors and physicians.


Author(s):  
Nelson Yego ◽  
Juma Kasozi ◽  
Joseph Nkrunziza

The role of insurance in financial inclusion as well as in economic growth is immense. However, low uptake seems to impede the growth of the sector hence the need for a model that robustly predicts uptake of insurance among potential clients. In this research, we compared the performances of eight (8) machine learning models in predicting the uptake of insurance. The classifiers considered were Logistic Regression, Gaussian Naive Bayes, Support Vector Machines, K Nearest Neighbors, Decision Tree, Random Forest, Gradient Boosting Machines and Extreme Gradient boosting. The data used in the classification was from the 2016 Kenya FinAccess Household Survey. Comparison of performance was done for both upsampled and downsampled data due to data imbalance. For upsampled data, Random Forest classifier showed highest accuracy and precision compared to other classifiers but for down sampled data, gradient boosting was optimal. It is noteworthy that for both upsampled and downsampled data, tree-based classifiers were more robust than others in insurance uptake prediction. However, in spite of hyper-parameter optimization, the area under receiver operating characteristic curve remained highest for Random Forest as compared to other tree-based models. Also, the confusion matrix for Random Forest showed least false positives, and highest true positives hence could be construed as the most robust model for predicting the insurance uptake. Finally, the most important feature in predicting uptake was having a bank product hence bancassurance could be said to be a plausible channel of distribution of insurance products.


Toxics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 333
Author(s):  
Ayush Agrawal ◽  
Mark R. Petersen

Arsenic, a potent carcinogen and neurotoxin, affects over 200 million people globally. Current detection methods are laborious, expensive, and unscalable, being difficult to implement in developing regions and during crises such as COVID-19. This study attempts to determine if a relationship exists between soil’s hyperspectral data and arsenic concentration using NASA’s Hyperion satellite. It is the first arsenic study to use satellite-based hyperspectral data and apply a classification approach. Four regression machine learning models are tested to determine this correlation in soil with bare land cover. Raw data are converted to reflectance, problematic atmospheric influences are removed, characteristic wavelengths are selected, and four noise reduction algorithms are tested. The combination of data augmentation, Genetic Algorithm, Second Derivative Transformation, and Random Forest regression (R2=0.840 and normalized root mean squared error (re-scaled to [0,1]) = 0.122) shows strong correlation, performing better than past models despite using noisier satellite data (versus lab-processed samples). Three binary classification machine learning models are then applied to identify high-risk shrub-covered regions in ten U.S. states, achieving strong accuracy (=0.693) and F1-score (=0.728). Overall, these results suggest that such a methodology is practical and can provide a sustainable alternative to arsenic contamination detection.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7926
Author(s):  
Charis Ntakolia ◽  
Christos Kokkotis ◽  
Patrik Karlsson ◽  
Serafeim Moustakidis

Global competition among businesses imposes a more effective and low-cost supply chain allowing firms to provide products at a desired quality, quantity, and time, with lower production costs. The latter include holding cost, ordering cost, and backorder cost. Backorder occurs when a product is temporarily unavailable or out of stock and the customer places an order for future production and shipment. Therefore, stock unavailability and prolonged delays in product delivery will lead to additional production costs and unsatisfied customers, respectively. Thus, it is of high importance to develop models that will effectively predict the backorder rate in an inventory system with the aim of improving the effectiveness of the supply chain and, consequentially, the performance of the company. However, traditional approaches in the literature are based on stochastic approximation, without incorporating information from historical data. To this end, machine learning models should be employed for extracting knowledge of large historical data to develop predictive models. Therefore, to cover this need, in this study, the backorder prediction problem was addressed. Specifically, various machine learning models were compared for solving the binary classification problem of backorder prediction, followed by model calibration and a post-hoc explainability based on the SHAP model to identify and interpret the most important features that contribute to material backorder. The results showed that the RF, XGB, LGBM, and BB models reached an AUC score of 0.95, while the best-performing model was the LGBM model after calibration with the Isotonic Regression method. The explainability analysis showed that the inventory stock of a product, the volume of products that can be delivered, the imminent demand (sales), and the accurate prediction of the future demand can significantly contribute to the correct prediction of backorders.


Sign in / Sign up

Export Citation Format

Share Document