Development of a Full-body OpenSim Musculoskeletal Model Incorporating Head-mounted Virtual Reality Headset

Author(s):  
Quentin Humphrey ◽  
Manoj Srinivasan ◽  
Syed T. Mubarrat ◽  
Suman K. Chowdhury

In this study, we developed and validated a full-body musculoskeletal model in OpenSim to estimate muscle and joint forces while performing various motor tasks using a virtual reality (VR) system. We compared the results from our developed full-body musculoskeletal model to those from previous studies by simulating kinematic and kinetic data of participants performing pick-and-place lifting tasks using with and without a physically interactive VR system. Results showed that scaling errors between the two environments are comparable, while the overall errors were consistent with previous studies. Overall, the results from the inverse dynamic simulations showed the promise of our developed OpenSim models in determining potential intervention or prevention strategies to reduce the musculoskeletal injury incidences while simulating human-device interaction tasks.

Leonardo ◽  
2017 ◽  
Vol 50 (1) ◽  
pp. 94-95 ◽  
Author(s):  
Jung Nam ◽  
Daniel F. Keefe

Spatial Correlation is an interactive digital artwork that provides a new window into the process of creating freeform handcrafted virtual sculptures while standing in an immersive Cave virtual reality (VR) environment. The piece originates in the lab, where the artist’s full-body, dance-like sculpting process is recorded using a combination of spatial tracking devices and an array of nine synchronized video cameras. Later, in the gallery, these raw data are reinterpreted as part of an interactive visualization that relates the three spaces in which the sculpture exists: 1) the physical lab/studio space in which the sculpture was created, 2) the digital virtual space in which the sculpture is mathematically defined and stored, and 3) the physical gallery space in which viewers now interact with the sculpture.


2020 ◽  
Vol 2020 (0) ◽  
pp. J23208
Author(s):  
Takanori HORIBA ◽  
Kotaro SUZUKI ◽  
Takanori MIURA ◽  
Akira KOMATSU ◽  
Takehiro IWAMI ◽  
...  

2021 ◽  
Vol 2 ◽  
Author(s):  
Collin Turbyne ◽  
Abe Goedhart ◽  
Pelle de Koning ◽  
Frederike Schirmbeck ◽  
Damiaan Denys

Background: Body image (BI) disturbances have been identified in both clinical and non-clinical populations. Virtual reality (VR) has recently been used as a tool for modulating BI disturbances through the use of eliciting a full body illusion (FBI). This meta-analysis is the first to collate evidence on the effectiveness of an FBI to reduce BI disturbances in both clinical and non-clinical populations.Methods: We performed a literature search in MEDLINE (PubMed), EMBASE, PsychINFO, and Web of Science with the keywords and synonyms for “virtual reality” and “body image” to identify published studies until September 2020. We included studies that (1) created an FBI with a modified body shape or size and (2) reported BI disturbance outcomes both before and directly after the FBI. FBI was defined as a head-mounted display (HMD)-based simulation of embodying a virtual body from an egocentric perspective in an immersive 3D computer-generated environment.Results: Of the 398 identified unique studies, 13 were included after reading full-texts. Four of these studies were eligible for a meta-analysis on BI distortion inducing a small virtual body FBI in healthy females. Significant post-intervention results were found for estimations of shoulder width, hip width, and abdomen width, with the largest reductions in size being the estimation of shoulder circumference (SMD = −1.3; 95% CI: −2.2 to −0.4; p = 0.004) and hip circumference (SMD = −1.0; 95% CI: −1.6 to −0.4; p = 0.004). Mixed results were found in non-aggregated studies from large virtual body FBIs in terms of both estimated body size and BI dissatisfaction and in small virtual body FBI in terms of BI dissatisfaction.Conclusions: The findings presented in this paper suggest that the participants' BIs were able to conform to both an increased as well as a reduced virtual body size. However, because of the paucity of research in this field, the extent of the clinical utility of FBIs still remains unclear. In light of these limitations, we provide implications for future research about the clinical utility of FBIs for modulating BI-related outcomes.


2019 ◽  
Author(s):  
Brock Laschowski ◽  
Reza Sharif Razavian ◽  
John McPhee

AbstractAlthough regenerative actuators can extend the operating durations of robotic lower-limb exoskeletons and prostheses, these energy-efficient powertrains have been exclusively designed and evaluated for continuous level-ground walking.ObjectiveHere we analyzed the lower-limb joint mechanical power during stand-to-sit movements using inverse dynamic simulations to estimate the biomechanical energy available for electrical regeneration.MethodsNine subjects performed 20 sitting and standing movements while lower-limb kinematics and ground reaction forces were measured. Subject-specific body segment parameters were estimated using parameter identification, whereby differences in ground reaction forces and moments between the experimental measurements and inverse dynamic simulations were minimized. Joint mechanical power was calculated from net joint torques and rotational velocities and numerically integrated over time to determine joint biomechanical energy.ResultsThe hip produced the largest peak negative mechanical power (1.8 ± 0.5 W/kg), followed by the knee (0.8 ± 0.3 W/kg) and ankle (0.2 ± 0.1 W/kg). Negative mechanical work from the hip, knee, and ankle joints per stand-to-sit movement were 0.35 ± 0.06 J/kg, 0.15 ± 0.08 J/kg, and 0.02 ± 0.01 J/kg, respectively.Conclusion and SignificanceAssuming an 80-kg person and previously published regenerative actuator efficiencies (i.e., maximum 63%), robotic lower-limb exoskeletons and prostheses could theoretically regenerate ~26 Joules of total electrical energy while sitting down, compared to ~19 Joules per walking stride. Given that these regeneration performance calculations are based on healthy young adults, future research should include seniors and/or rehabilitation patients to better estimate the biomechanical energy available for electrical regeneration among individuals with mobility impairments.


2002 ◽  
Vol 205 (12) ◽  
pp. 1683-1702 ◽  
Author(s):  
William J. Kargo ◽  
Frank Nelson ◽  
Lawrence C. Rome

SUMMARY Comparative musculoskeletal modeling represents a tool to understand better how motor system parameters are fine-tuned for specific behaviors. Frog jumping is a behavior in which the physical properties of the body and musculotendon actuators may have evolved specifically to extend the limits of performance. Little is known about how the joints of the frog contribute to and limit jumping performance. To address these issues, we developed a skeletal model of the frog Rana pipiens that contained realistic bones, joints and body-segment properties. We performed forward dynamic simulations of jumping to determine the minimal number of joint degrees of freedom required to produce maximal-distance jumps and to produce jumps of varied take-off angles. The forward dynamics of the models was driven with joint torque patterns determined from inverse dynamic analysis of jumping in experimental frogs. When the joints were constrained to rotate in the extension—flexion plane, the simulations produced short jumps with a fixed angle of take-off. We found that, to produce maximal-distance jumping,the skeletal system of the frog must minimally include a gimbal joint at the hip (three rotational degrees of freedom), a universal Hooke's joint at the knee (two rotational degrees of freedom) and pin joints at the ankle,tarsometatarsal, metatarsophalangeal and iliosacral joints (one rotational degree of freedom). One of the knee degrees of freedom represented a unique kinematic mechanism (internal rotation about the long axis of the tibiofibula)and played a crucial role in bringing the feet under the body so that maximal jump distances could be attained. Finally, the out-of-plane degrees of freedom were found to be essential to enable the frog to alter the angle of take-off and thereby permit flexible neuromotor control. The results of this study form a foundation upon which additional model subsystems (e.g. musculotendon and neural) can be added to test the integrative action of the neuromusculoskeletal system during frog jumping.


2018 ◽  
Vol 21 (5) ◽  
pp. 304-310 ◽  
Author(s):  
Silvia Serino ◽  
Federica Scarpina ◽  
Antonios Dakanalis ◽  
Anouk Keizer ◽  
Elisa Pedroli ◽  
...  

2021 ◽  
pp. 1-16
Author(s):  
Abdelaziz A. Abdelhamid ◽  
Sultan R. Alotaibi

Internet of things (IoT) plays significant role in the fourth industrial revolution and attracts an increasing interest due to the rapid development of smart devices. IoT comprises factors of twofold. Firstly, a set of things (i.e., appliances, devices, vehicles, etc.) connected together via network. Secondly, human-device interaction to communicate with these things. Speech is the most natural methodology of interaction that can enrich user experience. In this paper, we propose a novel and effective approach for building customized voice interaction for controlling smart devices in IoT environments (i.e., Smart home). The proposed approach is based on extracting customized tiny decoding graph from a large graph constructed using weighted finite sates transducers. Experimental results showed that tiny decoding graphs are very efficient in terms of computational resources and recognition accuracy in clean and noisy conditions. To emphasize the effectiveness of the proposed approach, the standard Resources Management (RM1) dataset was employed and promising results were achieved when compared with four competitive approaches.


Sign in / Sign up

Export Citation Format

Share Document