scholarly journals Comparative Studies on the Anticoagulant Profile of Branded Enoxaparin and a New Biosimilar Version

2020 ◽  
Vol 26 ◽  
pp. 107602962096082
Author(s):  
Dalia Qneibi ◽  
Eduardo Ramacciotti ◽  
Ariane Scarlatelli Macedo ◽  
Roberto Augusto Caffaro ◽  
Leandro Barile Agati ◽  
...  

Low molecular weight heparins (LMWH) represent depolymerized heparin prepared by various methods that exhibit differential, biochemical and pharmacological profiles. Enoxaparin is prepared by benzylation followed by alkaline depolymerization of porcine heparin. Upon the expiration of its patent, several biosimilar versions of enoxaparin have become available. Heparinox (Sodic enoxaparine; Cristália Produtos Químicos Farmacêuticos LTDA, Sao Paulo, Brazil) is a new biosimilar form of enoxaparin. We assessed the molecular weight and the biochemical profile of Heparinox and compared its properties to the original branded enoxaparin (Lovenox; Sanofi, Paris, France). Clotting profiles compared included activated clotting time, activated partial thromboplastin time (aPTT), and thrombin time (TT). Anti-protease assays included anti-factor Xa and anti-factor IIa activities. Thrombin generation was measured using a calibrated automated thrombogram and thrombokinetic profile included peak thrombin, lag time and area under the curve. USP potency was determined using commercially available assay kits. Molecular weight profiling was determined using high performance liquid chromatography. We determined that Heparinox and Lovenox were comparable in their molecular weight profile. Th anticoagulant profile of the branded and biosimilar version were also similar in the clot based aPTT and TT. Similarly, the anti-Xa and anti-IIa activities were comparable in the products. No differences were noted in the thrombin generation inhibitory profile of the branded and biosimilar versions of enoxaparin. Our studies suggest that Heparinox is bioequivalent to the original branded enoxaparin based upon in vitro tests however will require further in vivo studies in animal models and humans to determine their clinical bioequivalence.

1977 ◽  
Author(s):  
R. Michalski ◽  
D. A. Lane ◽  
V. V. Kakkar

We have already reported O) some in vitro and in vivo properties of a low molecular weight glycosaminoglycan polysulphate. It was found that while this semi-synthetic heparin analogue (SSHA) was virtually inactive in a number of in vitro clotting assays, following intravenous or subcutaneous injection it has a more specific anti-Xa potentiating effect than heparin. In the present communication a comparison has been made of some effects of SSHA and heparin upon platelet function. In several of the in vitro tests performed, such as their potentiating effect on ADP and adrenaline induced aggregation and their effects on the aggregation of washed platelets by Factor Xa, heparin proved to be far more potent than SSHA. It was found that after intravenous injection of both drugs, PRP samples containing comparable anti-Factor Xa activities responded differently to the addition of thrombin as SSHA barely inhibited thrombin induced aggregation. Similarly, SSHA had little effect on the dilute thrombin clotting time of plasma, following intravenous injection. Heparin and analogue were neutralised to approximately the same degree by a crude PF4 preparation, and similar transient thrombocytopenia effects were observed with both drugs.


1981 ◽  
Vol 45 (03) ◽  
pp. 214-218 ◽  
Author(s):  
D P Thomas ◽  
R E Merton ◽  
W E Lewis ◽  
T W Barrowcliffe

SummaryIn vitro and in vivo studies were carried out on a commercially prepared low molecular weight heparin fraction. By APTT assay the fraction had a specific activity of half that of unfractionated mucosal heparin, yet retained full potency by anti-Xa assay (both clotting and chromogenic substrate). When administered intravenously to human volunteers, the anti-Xa/APTT ratio remained the same as it was in vitro. However, after subcutaneous injection, the ratio increased and anti-Xa activity could not be fully neutralized ex vivo by PF4. The fraction was as effective as unfractionated heparin in preventing experimental serum-induced thrombosis, suggesting that a heparin fraction with high specific activity by anti-Factor Xa assay compared to APTT activity may be an effective drug for the prophylaxis of venous thrombosis.


1981 ◽  
Author(s):  
A S Bhargava ◽  
H Wendt ◽  
P Günzel

The anticoagulant effect of a new potent heparin containing 83% high affinity and 17% low affinity fractions was compared with commercial heparin after a single i.v. application in human subjects. 20 male and 20 female normal adult subjects participated in this study. 2 male and 2 female subjects per group were treated intravenously with doses ranging from 18.3–218.3 μg for new potent heparin and 40.3–483.0 μg for commercial heparin per kg body weight. Determinations of thrombin time, whole blood clotting time, activated partial thromboplastin time and plasma heparin levels using factor Xa inactivation assay were performed before and 5, 10, 15, 30 and 60 min after heparin application. The regression analysis and parallel line assay were performed using log dose or double log transformation or log dose and square root transformation of areas under the curve to estimate the relative potencies of the new heparin preparation.The new heparin was 1.5 to 2.0 times more effective than commercial heparin per mg dry weight depending upon the coagulation tests used and the length of observation period. These relative potencies of the new heparin in human is in good correlation with relative potencies determined earlier for the same preparation in different in vitro tests including thrombelastography and in vivo using the dog as an experimental animal. In addition, the determinations of biochemical and the haematological parameters, 24h after application indicated no signs of any adverse effect.


1981 ◽  
Author(s):  
J Fareed ◽  
H L Messmore ◽  
J Choay ◽  
C Lormeau ◽  
M Petitou ◽  
...  

Ultra low molecular weight saccharide fragments (ULMFs) have been obtained from porcine mucosal heparin (PMH) by extraction (e-ULMF) and by bacterial heparinase depolymerization (h-ULMF-8) processes. Both fragments showed a strong anti Xa activity (>2000 u/mg units, Yin and Wessler, J. Lab. Clin. Med. 81, 298, 1973) and possess relatively weak potencies in the US Pharmacoepial (<40 USP u/mg) and other conventional coagulant assays (activated and non activated partial thromboplastin time, thrombin time and whole blood activated recalcification times). Since ULMFs showed a strong anti Xa activity, we evaluated their antithrombotic actions in a modified stasis-thrombosis model (Wessler et. al. J. App. Phys. 14, 943, 1959) challenging the animals with various thrombogenic stimuli; activated and non activated prothrombin complex concentrates, factor Xa concentrates and human serum. h-ULMF-8 at dosage <0.125 mg/kg (<250 Anti Xa u/kg) IV and <1.0 mg/kg (>2000 anti Xa u/kg) SC completely protected the thrombogenic effects of various thrombogenic agents, whereas PMH at these dosages failed to produce any protection in pre and post treatment regiments. Similar studies with e-ULMF showed protection, however, the antithrombotic responses varied among animals. In vitro supplementation of heparin fragments at 5 times the concentration which protected animals against the thrombogenic effects of activated prothrombin complex concentrates failed to produce any elevation of prothrombin time, partial thromboplastin times, thrombin time and other coagulant assays. Our studies suggest that ULMFs are potent antithrombotic agents and may exert their effects involving multiple sites and primarily inhibiting the Xa and the non-thrombin serine proteases formed during activated states.


1998 ◽  
Vol 79 (05) ◽  
pp. 1041-1047 ◽  
Author(s):  
Kathleen M. Donnelly ◽  
Michael E. Bromberg ◽  
Aaron Milstone ◽  
Jennifer Madison McNiff ◽  
Gordon Terwilliger ◽  
...  

SummaryWe evaluated the in vivo anti-metastatic activity of recombinant Ancylostoma caninum Anticoagulant Peptide (rAcAP), a potent (Ki = 265 pM) and specific active site inhibitor of human coagulation factor Xa originally isolated from bloodfeeding hookworms. Subcutaneous injection of SCID mice with rAcAP (0.01-0.2 mg/mouse) prior to tail vein injection of LOX human melanoma cells resulted in a dose dependent reduction in pulmonary metastases. In order to elucidate potential mechanisms of rAcAP’s anti-metastatic activity, experiments were carried out to identify specific interactions between factor Xa and LOX. Binding of biotinylated factor Xa to LOX monolayers was both specific and saturable (Kd = 15 nM). Competition experiments using antibodies to previously identified factor Xa binding proteins, including factor V/Va, effector cell protease receptor-1, and tissue factor pathway inhibitor failed to implicate any of these molecules as significant binding sites for Factor Xa. Functional prothrombinase activity was also supported by LOX, with a half maximal rate of thrombin generation detected at a factor Xa concentration of 2.4 nM. Additional competition experiments using an excess of either rAcAP or active site blocked factor Xa (EGR-Xa) revealed that most of the total factor Xa binding to LOX is mediated via interaction with the enzyme’s active site, predicting that the vast majority of cell-associated factor Xa does not participate directly in thrombin generation. In addition to establishing two distinct mechanisms of factor Xa binding to melanoma, these data raise the possibility that rAcAP’s antimetastatic effect in vivo might involve novel non-coagulant pathways, perhaps via inhibition of active-site mediated interactions between factor Xa and tumor cells.


1994 ◽  
Vol 72 (06) ◽  
pp. 942-946 ◽  
Author(s):  
Raffaele Landolfi ◽  
Erica De Candia ◽  
Bianca Rocca ◽  
Giovanni Ciabattoni ◽  
Armando Antinori ◽  
...  

SummarySeveral “in vitro” and “in vivo” studies indicate that heparin administration may affect platelet function. In this study we investigated the effects of prophylactic heparin on thromboxane (Tx)A2 biosynthesis “in vivo”, as assessed by the urinary excretion of major enzymatic metabolites 11-dehydro-TxB2 and 2,3-dinor-TxB2. Twenty-four patients who were candidates for cholecystectomy because of uncomplicated lithiasis were randomly assigned to receive placebo, unfractionated heparin, low molecular weight heparin or unfractionaed heparin plus 100 mg aspirin. Measurements of daily excretion of Tx metabolites were performed before and during the treatment. In the groups assigned to placebo and to low molecular weight heparin there was no statistically significant modification of Tx metabolite excretion while patients receiving unfractionated heparin had a significant increase of both metabolites (11-dehydro-TxB2: 3844 ± 1388 vs 2092 ±777, p <0.05; 2,3-dinor-TxB2: 2737 ± 808 vs 1535 ± 771 pg/mg creatinine, p <0.05). In patients randomized to receive low-dose aspirin plus unfractionated heparin the excretion of the two metabolites was largely suppressed thus suggesting that platelets are the primary source of enhanced thromboxane biosynthesis associated with heparin administration. These data indicate that unfractionated heparin causes platelet activation “in vivo” and suggest that the use of low molecular weight heparin may avoid this complication.


1995 ◽  
Vol 74 (02) ◽  
pp. 660-666 ◽  
Author(s):  
P Mismetti ◽  
J Reynaud ◽  
B Tardy-Poncet ◽  
S Laporte-Simitsidis ◽  
M Scully ◽  
...  

SummaryLow molecular weight heparin (LMWH) is currently prescribed for the treatment of deep vein thrombosis at the dose of 100 IU antiXa/kg twice daily or at a dose of 175 IU antiXa/kg once daily with a similar efficacy. We decided to study the chrono-pharmacology of curative dose of LMWH once daily administrated according to the one previously described with unfractionated heparin (UFH).Ten healthy volunteers participated in an open three-period crossover study according to three 24 h cycles, separated by a wash-out interval lasting 7 days: one control cycle without injection, two cycles with subcutaneous injection of 200 IU antiXa/kg of Dalteparin (Fragmin®) at 8 a.m. or at 8 p.m. Parameters of heparin activity were analysed as maximal values and area under the curve.Activated partial thromboplastin time (APTT), thrombin time (TT), prothrombin time (PT) and tissue factor pathway inhibitor (TFPI) were higher after 8 p.m. injection than after 8 a.m. injection (p <0.05) while no chrono-pharmacological variation of anti factor Xa (AXa) activity was observed. Thus the biological anticoagulant effect of 200 IU antiXa/kg of Dalteparin seems to be higher after an evening injection than after a morning injection.A chrono-therapeutic approach with LMWH, as prescribed once daily, deserves further investigation since our results suggest that a preferential injection time may optimise the clinical efficacy of these LMWH.


1982 ◽  
Vol 47 (03) ◽  
pp. 244-248 ◽  
Author(s):  
D P Thomas ◽  
Rosemary E Merton ◽  
T W Barrowcliffe ◽  
L Thunberg ◽  
U Lindahl

SummaryThe in vitro and in vivo characteristics of two oligosaccharide heparin fragments have been compared to those of unfractionated mucosal heparin. A decasaccharide fragment had essentially no activity by APTT or calcium thrombin time assays in vitro, but possessed very high specific activity by anti-Factor Xa assays. When injected into rabbits at doses of up to 80 ¼g/kg, this fragment was relatively ineffective in impairing stasis thrombosis despite producing high blood levels by anti-Xa assays. A 16-18 monosaccharide fragment had even higher specific activity (almost 2000 iu/mg) by chromogenic substrate anti-Xa assay, with minimal activity by APTT. When injected in vivo, this fragment gave low blood levels by APTT, very high anti-Xa levels, and was more effective in preventing thrombosis than the decasaccharide fragment. However, in comparison with unfractionated heparin, the 16-18 monosaccharide fragment was only partially effective in preventing thrombosis, despite producing much higher blood levels by anti-Xa assays.It is concluded that the high-affinity binding of a heparin fragment to antithrombin III does not by itself impair venous thrombogenesis, and that the anti-Factor Xa activity of heparin is only a partial expression of its therapeutic potential.


1983 ◽  
Vol 50 (03) ◽  
pp. 652-655 ◽  
Author(s):  
F Bauer ◽  
P Schulz ◽  
G Reber ◽  
C A Bouvier

SummaryThree mucopolysaccharides (MPS) used in the treatment of degenerative joint disease were compared to heparin to establish their relative potencies on 3 coagulation tests, the aPTT, the antifactor X a activity and the dilute thrombin time. One of the compounds, Arteparon®, was one fourth as potent as heparin on the aPTT, but had little or no influence on the 2 other tests. Further in vitro studies suggested that Arteparon® acted at a higher level than factor Xa generation in the intrinsic amplification system and that its effect was independent of antithrombin III. In vivo administration of Arteparon® confirmed its anticoagulant properties, which raises the question of the clinical use of this MPS.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1356-1363 ◽  
Author(s):  
Barbara P. Schick ◽  
David Maslow ◽  
Adrianna Moshinski ◽  
James D. San Antonio

Abstract Patients given unfractionated heparin (UFH) or low-molecular-weight heparin (LMWH) for prophylaxis or treatment of thrombosis sometimes suffer serious bleeding. We showed previously that peptides containing 3 or more tandem repeats of heparin-binding consensus sequences have high affinity for LMWH and neutralize LMWH (enoxaparin) in vivo in rats and in vitro in citrate. We have now modified the (ARKKAAKA)n tandem repeat peptides by cyclization or by inclusion of hydrophobic tails or cysteines to promote multimerization. These peptides exhibit high-affinity binding to LMWH (dissociation constant [Kd], ≈ 50 nM), similar potencies in neutralizing anti–Factor Xa activity of UFH and enoxaparin added to normal plasma in vitro, and efficacy equivalent to or greater than protamine. Peptide (ARKKAAKA)3VLVLVLVL was most effective in all plasmas from enoxaparin-treated patients, and was 4- to 20-fold more effective than protamine. Several other peptide structures were effective in some patients' plasmas. All high-affinity peptides reversed inhibition of thrombin-induced clot formation by UFH. These peptides (1 mg/300 g rat) neutralized 1 U/mL anti–Factor Xa activity of enoxaparin in rats within 1 to 2 minutes. Direct blood pressure and heart rate measurements showed little or no hemodynamic effect. These heparin-binding peptides, singly or in combination, are potential candidates for clinical reversal of UFH and LMWH in humans.


Sign in / Sign up

Export Citation Format

Share Document