Active Feedback Control Using Adaptive Filtering

2004 ◽  
Vol 10 (1) ◽  
pp. 25-38
Author(s):  
Fenglin Wang ◽  
Chris K Mechefske

In this paper we apply a filtered-X algorithm to an active feedback control structure and derive the transfer function of a closed-loop control system. Simulation studies are then carried out on the closed-loop property while varying the parameters (input frequency, delays in plant, amplitude and phase of modeling filter). Several properties of adaptive feedback control are revealed. Experimental studies on feedback active noise control of noise in a finite duct and a small enclosure are described, and outstanding active noise control effects are achieved. Experimental results of closed-loop frequency response are also provided.

1998 ◽  
Vol 120 (2) ◽  
pp. 216-223 ◽  
Author(s):  
K. A. Morris

Noise control in a one-dimensional duct is analyzed. This problem is of practical interest and is also simple enough that a complete theoretical analysis is possible. It is shown that the optimal controller leads to an unstable closed loop. The noise reduction level achievable with a stable closed loop is calculated for arbitrary choices of sensor and actuator locations. This enables the best placement of sensors and actuators to be determined. Also, the analysis indicates that a “spatial waterbed” effect exists in some configurations of active noise control: i.e., that noise levels are increased for points outside of the region over which the design is done.


Sign in / Sign up

Export Citation Format

Share Document