Length scale-dependent natural frequencies of piezoelectric microplates

2017 ◽  
Vol 24 (13) ◽  
pp. 2749-2759 ◽  
Author(s):  
M Jafari ◽  
E Jomehzadeh ◽  
M Rezaeizadeh

The length-scale free vibration analysis of a rectangular microplate coupled with piezoelectric layers is presented. The modified couple stress theory is used to describe the size effect of the system. The governing equations of motion are obtained using Hamilton’s principle based on the classical plate theory. The transverse part of the electric potential for the piezoelectric layers is considered to satisfy the Maxwell’s equation and the electrical boundary conditions. A new procedure is introduced to decouple the governing equations and then an analytical Levy-type solution is obtained. The exact natural frequencies are established for a wide range of length scales, various plate dimensions, several piezoelectric layer thicknesses, and different boundary conditions. The results show that the effect of length scale parameter is decreased by the piezoelectric electrical field.

Author(s):  
M. A. Askari-Farsangi ◽  
A. R. Saidi

In the present research, an exact Levy solution for the free vibration analysis of FGM plates with integrated piezoelectric layers is established. The electrical boundary conditions and the Maxwell’s equation are satisfied by assuming the transverse distribution of electric potential to be a combination of a parabolic and a linear function. On the basis of classical plate theory, the coupled governing equations for both closed and open circuit piezoelectric coupled structures are reformulated into two new decoupled equations. The numerical results for the Levy type of boundary conditions, two opposite edges simply supported and arbitrary boundary conditions at the other edges, and both closed and open circuit piezoelectric coupled plates have been presented. The effects of piezoelectric layer thickness on the natural frequency for different power law indices, thickness-length ratios, modes, boundary conditions, and material properties are investigated.


2014 ◽  
Vol 21 (4) ◽  
pp. 571-587 ◽  
Author(s):  
Hamid Reza Saeidi Marzangoo ◽  
Mostafa Jalal

AbstractFree vibration analysis of functionally graded (FG) curved panels integrated with piezoelectric layers under various boundary conditions is studied. A panel with two opposite edges is simply supported, and arbitrary boundary conditions at the other edges are considered. Two different models of material property variations based on the power law distribution in terms of the volume fractions of the constituents and the exponential law distribution of the material properties through the thickness are considered. Based on the three-dimensional theory of elasticity, an approach combining the state space method and the differential quadrature method (DQM) is used. For the simply supported boundary conditions, closed-form solution is given by making use of the Fourier series expansion, and applying the differential quadrature method to the state space formulations along the axial direction, new state equations about state variables at discrete points are obtained for the other cases such as clamped or free-end conditions. Natural frequencies of the hybrid curved panels are presented by solving the eigenfrequency equation, which can be obtained by using edges boundary conditions in this state equation. The results obtained for only FGM shell is verified by comparing the natural frequencies with the results obtained in the literature.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
R. Ansari ◽  
M. A. Ashrafi ◽  
S. Hosseinzadeh

The vibration behavior of piezoelectric microbeams is studied on the basis of the modified couple stress theory. The governing equations of motion and boundary conditions for the Euler-Bernoulli and Timoshenko beam models are derived using Hamilton’s principle. By the exact solution of the governing equations, an expression for natural frequencies of microbeams with simply supported boundary conditions is obtained. Numerical results for both beam models are presented and the effects of piezoelectricity and length scale parameter are illustrated. It is found that the influences of piezoelectricity and size effects are more prominent when the length of microbeams decreases. A comparison between two beam models also reveals that the Euler-Bernoulli beam model tends to overestimate the natural frequencies of microbeams as compared to its Timoshenko counterpart.


Author(s):  
F. Attar ◽  
R. Khordad ◽  
A. Zarifi

The free vibration of single-layered graphene sheet (SLGS) has been studied by nonlocal modified couple stress theory (NMCS), analytically. Governing equation of motion for SLGS is obtained via thin plate theory in conjunction with Hamilton’s principle for two cases: (1) using nonlocal parameter only for stress tensor, (2) using nonlocal parameter for both stress and couple stress tensors. Navier’s approach has been used to solve the governing equations for simply supported boundary conditions. It is found that the frequency ratios decrease with increasing nonlocal parameter and also with enhancing vibration modes, but increase with raising length scale parameter. The nonlocal and length scale parameters are more prominent in higher vibration modes. The obtained results have been compared with the previous studies obtained by using classical plate theory, the modified couple stress theory and nonlocal elasticity theory, separately.


Symmetry ◽  
2019 ◽  
Vol 11 (3) ◽  
pp. 429 ◽  
Author(s):  
Krzysztof Żur ◽  
Piotr Jankowski

Free vibration analysis of the porous functionally graded circular plates has been presented on the basis of classical plate theory. The three defined coupled equations of motion of the porous functionally graded circular/annular plate were decoupled to one differential equation of free transverse vibrations of plate. The one universal general solution was obtained as a linear combination of the multiparametric special functions for the functionally graded circular and annular plates with even and uneven porosity distributions. The multiparametric frequency equations of functionally graded porous circular plate with diverse boundary conditions were obtained in the exact closed-form. The influences of the even and uneven distributions of porosity, power-law index, diverse boundary conditions and the neglected effect of the coupling in-plane and transverse displacements on the dimensionless frequencies of the circular plate were comprehensively studied for the first time. The formulated boundary value problem, the exact method of solution and the numerical results for the perfect and imperfect functionally graded circular plates have not yet been reported.


Symmetry ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 515
Author(s):  
Olga Mazur ◽  
Jan Awrejcewicz

Vibrations of single-layered graphene sheets subjected to a longitudinal magnetic field are considered. The Winkler-type and Pasternak-type foundation models are employed to reproduce the surrounding elastic medium. The governing equation is based on the modified couple stress theory and Kirchhoff–Love hypotheses. The effect of the magnetic field is taken into account due to the Lorentz force deriving from Maxwell’s equations. The developed approach is based on applying the Ritz method. The proposed method is tested by a comparison with results from the existing literature. The numerical calculations are performed for different boundary conditions, including the mixed ones. The influence of the material length scale parameter, the elastic foundation parameters, the magnetic parameter and the boundary conditions on vibration frequencies is studied. It is observed that an increase of the magnetic parameter, as well as the elastic foundation parameters, brings results closer to the classical plate theory results. Furthermore, the current study can be applied to the design of microplates and nanoplates and their optimal usage.


Author(s):  
Morteza Balak ◽  
Saeed Jafari Mehrabadi ◽  
Hamid Mohseni Monfared ◽  
Hassan Feizabadi

Porous materials are used extensively to manufacture beams, plates, and shells, and have been studies from different perspectives. Composite porous plates in various shapes and dimensions have numerous industrial applications. The vibration behaviors of rectangular and circular plates have been previously studied; however, less attention has been paid to the analysis of complex configuration, such as elliptical plates. We analyzed the free vibration of composite elliptical plates, consisting of a porous core and two piezoelectric layers. The governing equations were based on the classical plate theory and Rayleigh–Ritz’s energy method. The properties of porous materials with varying thickness of the core and porosity distributions continuously undergo changes due to the intended applications and functions. The proposed theoretical functions satisfy the boundary conditions in simple and clamped forms, and with a high degree of accuracy in the frequencies. Finally, we investigated the effects of important variables, such as geometric parameters and material specifications on the natural frequencies. The results of our analyses were consistent with the findings of previous studies. Based on our vibration analyses, the most crucial factors in composite elliptical plates are geometrical parameters, material specifications, and their effects on the vibration frequencies of the proposed model.


Author(s):  
E. F. Joubaneh ◽  
O. R. Barry

This paper presents the free vibration analysis of a sandwich beam with a tip mass using higher order sandwich panel theory (HSAPT). The governing equations of motion and boundary conditions are obtained using Hamilton’s principle. General Differential Quadrature (GDQ) is employed to solve the system governing equations of motion. The natural frequencies and mode shapes of the system are presented and Ansys simulation is performed to validate the results. Various boundary conditions are also employed to examine the natural frequencies of the sandwich beam without tip mass and the results are compared with those found in the literature. Parametric studies are conducted to examine the effect of key design parameters on the natural frequencies of the sandwich beam with and without tip mass.


Author(s):  
Emad Jomehzadeh ◽  
Ali Reza Saidi

The free vibration analysis of a nano-plate is investigated based on the first order shear deformation theory considering the small scale effect. The governing equations of motion are obtained using Hamilton’s principle by considering the nonlocal constitutive equations of Eringen. These coupled partial differential equations are reformulated into two new equations called the edge-zone and interior equations. Analytical solutions are obtained for a nano-plate with Levy boundary conditions. In order to find the natural frequencies of the nano-plate, the various boundary conditions at one direction of the plate should be imposed. Applying these conditions and setting the determinant of the six order coefficient matrix equal to zero, the natural frequencies of the nano-plate are evaluated. Non-dimensional frequency parameters are presented for over a wide range of nonlocal parameters and different boundary conditions. In addition, the effects of nonlocal parameter on the natural frequency of a nano-plate are discussed in details.


Author(s):  
Krzysztof Kamil Żur ◽  
Piotr Jankowski

Free vibration analysis of the porous functionally graded circular plates has been presented on the basis of classical plate theory. The three defined coupled equations of motion of the porous functionally graded circular/annular plate were decoupled to one differential equation of free transverse vibrations of plate. The one universal general solution was obtained as linear combination of the multiparametric special functions for the functionally graded circular and annular plates with even and uneven porosity distributions. The multiparametric frequency equations of functionally graded porous circular plate with diverse boundary conditions were obtained in the exact closed-form. The influences of the even and uneven distributions of porosity, power-law index, diverse boundary conditions and the negligibled effect of the coupling in-plane and transverse displacements on the dimensionless frequencies of the circular plate were comprehensively studied for the first time. The formulated boundary value problem, the exact method of solution and the numerical results for the perfect and imperfect functionally graded circular plates have not yet been reported.


Sign in / Sign up

Export Citation Format

Share Document