New genetic algorithm for structural active control by considering the effect of time delay

2020 ◽  
pp. 107754632093346
Author(s):  
Ali Banaei ◽  
Javad Alamatian

This study focuses on a new active control method by improving specification of a well-known intelligent numerical search method, that is the genetic algorithm. The proposed scheme modifies the specifications of the common genetic algorithm by using two strategies. First, a new constrained objective function is proposed. Then, a procedure is designed for evaluating and reducing time delay in control process. These procedures lead to a new generation of the genetic algorithm, which is more reliable. For verifying the efficiency of the proposed method, vibrations of several structures are controlled, and results are compared with other well-known methods such as the common genetic algorithm, linear quadratic regulator, and equivalent critical damping. Numerical results clearly prove the accuracy and efficiency of the proposed control process in comparison with other methods.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Lei Zhang ◽  
Xiangtao Zhuan

An electromagnetic isolation system can dynamically adjust the output characteristic parameters of the system in real time through the active control strategy, which has strong adaptability to the external environment. In order to control the electromagnetic vibration isolation system effectively, an active control method is presented based on the linear quadratic regulator (LQR) approach and the coevolutionary niche genetic algorithm (NGA). In this paper, the dynamical equation and state equation of the electromagnetic isolation system are built, which include the nonlinear relationship between electromagnetic force and coil current and gap. The LQR approach is employed to maintain a steady state of an isolated object on the vibration isolation system. Meanwhile, a coevolutionary niche genetic algorithm is put forward to optimize the parameters in Q and R matrices. Simulation and experimental results demonstrate that the electromagnetic isolation system with the LQR approach and coevolutionary NGA can effectively isolate the vibration and maintain a steady state for an isolated object in comparison with the passive isolation system.


2017 ◽  
Vol 7 (3) ◽  
pp. 1638-1646
Author(s):  
M. Sareban

Recently active structure controllers were considered to deal with the impact of earthquake forces and the result of the investigations provided multiple algorithms to calculate force control and many different ways to apply these forces on the structure. In this study, the efficiency and effectiveness of three methods (linear quadratic regulator, fuzzy logic and pole assigning) are investigated. In addition, three buildings with different height classes with an active tuned mass damper (ATMD) on the top floor are considered to compare the active control methods. Examples with known mass and stiffness and with variable mass are considered. The results show that all three control methods used for the ATMD device reduce the structural response. The fuzzy control method, caused a sharp decline in relative displacement of building floors up to 80%. But in LQR and pole allocation procedures the applied force is limited. The best performance of fuzzy control is for high-rise buildings. The three different methods of control are stable in different masses and even under a random change of floor masses, their effectiveness can be trusted.


2018 ◽  
Vol 15 (7) ◽  
pp. 075101 ◽  
Author(s):  
H L Yu ◽  
Z X Zhang ◽  
X L Wang ◽  
R T Su ◽  
H W Zhang ◽  
...  

2021 ◽  
Author(s):  
Ali Durdu ◽  
Yılmaz Uyaroğlu

Abstract Many studies have been introduced in the literature showing that two identical chaotic systems can be synchronized with different initial conditions. Secure data communication applications have also been made using synchronization methods. In the study, synchronization times of two popular synchronization methods are compared, which is an important issue for communication. Among the synchronization methods, active control, integer, and fractional-order Pecaro Carroll (P-C) method was used to synchronize the Burke-Shaw chaotic attractor. The experimental results showed that the P-C method with optimum fractional-order is synchronized in 2.35 times shorter time than the active control method. This shows that the P-C method using fractional-order creates less delay in synchronization and is more convenient to use in secure communication applications.


2021 ◽  
pp. 1-20
Author(s):  
Yixin Zhang ◽  
Wei Pan ◽  
Shuo Zhan ◽  
Ran Huang ◽  
Shujiang Chen ◽  
...  

Abstract Studies show that active control technology can improve system performance and meet the increasing industrial demand in diverse applications. In the present study, the dynamic characteristics of the bearing-spindle system based on active piezoelectric (PZT) restrictors, including the amplitude-frequency and phase-frequency characteristics are analyzed theoretically and experimentally. In the analysis, the influence of the pipeline model on the system characteristics is studied. Then the feasibility and effectiveness of the active control method are verified through experiments. It is demonstrated that the theoretical and experimental results are consistent. The present study is expected to provide a guideline for further investigations on the structural optimization and control law design for active hydrostatic oil-film bearing spindle systems.


Author(s):  
Dechrit Maneetham ◽  
Petrus Sutyasadi

This research proposes control method to balance and stabilize an inverted pendulum. A robust control was analyzed and adjusted to the model output with real time feedback. The feedback was obtained using state space equation of the feedback controller. A linear quadratic regulator (LQR) model tuning and control was applied to the inverted pendulum using internet of things (IoT). The system's conditions and performance could be monitored and controlled via personal computer (PC) and mobile phone. Finally, the inverted pendulum was able to be controlled using the LQR controller and the IoT communication developed will monitor to check the all conditions and performance results as well as help the inverted pendulum improved various operations of IoT control is discussed.


Sign in / Sign up

Export Citation Format

Share Document