Mapping relationship between dynamic responses of high-speed trains and additional bridge deformations

2020 ◽  
pp. 107754632093689
Author(s):  
Hongye Gou ◽  
Chang Liu ◽  
Hui Hua ◽  
Yi Bao ◽  
Qianhui Pu

Deformations of high-speed railways accumulate over time and affect the geometry of the track, thus affecting the running safety of trains. This article proposes a new method to map the relationship between dynamic responses of high-speed trains and additional bridge deformations. A train–track–bridge coupled model is established to determine relationship between the dynamic responses (e.g. accelerations and wheel–rail forces) of the high-speed trains and the track deformations caused by bridge pier settlement, girder end rotation, and girder camber. The dynamic responses are correlated with the track deformation. The mapping relationship between bridge deformations and running safety of trains is determined. To satisfy the requirements of safety and riding comfort, the suggested upper thresholds of pier settlement, girder end rotation, and girder camber are 22.6 mm, 0.92‰ rad, and 17.2 mm, respectively. This study provides a method that is convenient for engineers in evaluation and maintenance of high-speed railway bridges.

Author(s):  
Wei Guo ◽  
Yang Wang ◽  
Hanyun Liu ◽  
Yan Long ◽  
Lizhong Jiang ◽  
...  

The main goal of this paper is to perform the safety assessment of high-speed trains (HSTs) on the simply supported bridges (SSBs) under low-level earthquakes, which are frequently encountered by HSTs, utilizing spectral intensity (SI) index. First, the HST’s limit displacements, which are calculated by using the multi-body train model with detailed wheel–rail relationship, varying with train speed, frequency and amplitude of a sinusoidal base excitation are obtained. Then, based on the obtained HST’s limit displacements, the spectral intensity limits (SIL) graded by the train’s running speed are calculated, and the relationship between the bridge seismic dynamic responses and the train’s running safety was established. Next, the method that utilizes the SI and the SIL indexes to evaluate the HST’s running safety was proposed and verified by comparing with the evaluation result of the train–track–bridge interaction model. Based on the proposed SI index, the HST’s running safety on the SSBs was evaluated under earthquakes, considering different pier heights and site types. The results showed that the low-frequency components of the ground motions are unfavorable to the HST’s running safety, and the height of bridge piers has a significant impact on running safety.


Author(s):  
Penghao Li ◽  
Zhonglong Li ◽  
Zhaoling Han ◽  
Shengyang Zhu ◽  
Wanming Zhai ◽  
...  

In Northeast China and the areas along Sichuan-Tibet railway, collision between floating ice and piers of railway bridges seriously threatens the train operation safety. The safety of high-speed train running on the bridge subject to the impact of floating ice collision is rarely assessed considering the spatial interaction of the train-track-bridge-ice system. To evaluate the running safety and ride comfort of trains and the structural stability of railway bridges under the collision between floating ices and piers, a train-track-bridge (TTB) dynamic interaction model considering the impact of floating ice is established. Using the refined finite element model, the collision process of floating ice on bridge pier is simulated, and the impact loads are employed as the excitation input of the TTB dynamics model. Taking a 5 × 32 m simply-supported bridges as a case study, the influence of bridge structural parameters on the floating ice collision system is investigated, and then the dynamic responses of the TTB system induced by the floating ice impact loads are analyzed in detail. Finally, the effect of the ice impact loads on the running safety of the high-speed train is revealed. Results show that under the floating ice impact loads, the angle of the pier sharp-nose (APSN) and lateral stiffness of foundations are the key parameters that influence the dynamic responses of the bridge, and an improperly small lateral stiffness of foundation would lead to an instability of bridge structure. The influence of ice impact loads on the dynamic responses of the train is remarkable. The lateral vibration acceleration, derailment factor and lateral wheel rail force caused by the ice impact loads are all greater than those caused by the track irregularity, while the wheel unloading rate is slightly smaller. In addition, the running speed of train is also closely related to the running safety and ride comfort when the collision occurs. When the train speed exceeds 400 km/h, the train passing through the bridge would have the possibility of derailment.


Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 431
Author(s):  
Junjie Ye ◽  
Hao Sun

In order to study the influence of an integration time step on dynamic calculation of a vehicle-track-bridge under high-speed railway, a vehicle-track-bridge (VTB) coupled model is established. The influence of the integration time step on calculation accuracy and calculation stability under different speeds or different track regularity states is studied. The influence of the track irregularity on the integration time step is further analyzed by using the spectral characteristic of sensitive wavelength. According to the results, the disparity among the effect of the integration time step on the calculation accuracy of the VTB coupled model at different speeds is very small. Higher speed requires a smaller integration time step to keep the calculation results stable. The effect of the integration time step on the calculation stability of the maximum vertical acceleration of each component at different speeds is somewhat different, and the mechanism of the effect of the integration time step on the calculation stability of the vehicle-track-bridge coupled system is that corresponding displacement at the integration time step is different. The calculation deviation of the maximum vertical acceleration of the car body, wheel-sets and bridge under the track short wave irregularity state are greatly increased compared with that without track irregularity. The maximum vertical acceleration of wheel-sets, rails, track slabs and the bridge under the track short wave irregularity state all show a significant declining trend. The larger the vibration frequency is, the smaller the range of integration time step is for dynamic calculation.


Volume 2 ◽  
2004 ◽  
Author(s):  
M. H. Kargarnovin ◽  
D. Younesian ◽  
D. J. Thompson ◽  
C. J. C. Jones

The ride comfort of high-speed trains passing over railway bridges is studied in this paper. The effects of some nonlinear parameters in a carriage-track-bridge system are investigated such as the load-stiffening characteristics of the rail-pad and the ballast, rubber elements in the primary and secondary suspensions systems. The influence of the track irregularity and train speed on two comfort indicators, namely Sperling’s comfort index and the maximum acceleration level, are also studied. Timoshenko beam theory is used for modelling the rail and bridge and two layers of parallel damped springs in conjunction with a layer of mass are used to model the rail-pads, sleepers and ballast. A randomly irregular vertical track profile is modelled, characterised by a power spectral density (PSD). The ‘roughness’ is generated for three classes of tracks. Nonlinear Hertz theory is used for modelling the wheel-rail contact.


2018 ◽  
Vol 22 (4) ◽  
pp. 919-934 ◽  
Author(s):  
Xun Zhang ◽  
Zhipeng Wen ◽  
Wensu Chen ◽  
Xiyang Wang ◽  
Yan Zhu

With the increasing popularity of high-speed railway, more and more bridges are being constructed in Western China where debris flows are very common. A debris flow with moderate intensity may endanger a high-speed train traveling on a bridge, since its direct impact leads to adverse dynamic responses of the bridge and the track structure. In order to address this issue, a dynamic analysis model is established for studying vibrations of coupled train–track–bridge system subjected to debris flow impact, in which a model of debris flow impact load in time domain is proposed and applied on bridge piers as external excitation. In addition, a six-span simply supported box girder bridge is considered as a case study. The dynamic responses of the bridge and the running safety indices such as derailment factor, offload factor, and lateral wheel–rail force of the train are investigated. Some influencing factors are then discussed based on parametric studies. The results show that both bridge responses and running safety indices are greatly amplified due to debris flow impact loads as compared with that without debris flow impact. With respect to the debris flow impact load, the boulder collision has a more negative impact on the dynamic responses of the bridge and train than the dynamic slurry pressure. Both the debris flow impact intensity and train speed determine the running safety indices, and the debris flow occurrence time should be also carefully considered to investigate the worst scenario.


2015 ◽  
Vol 20 (2) ◽  
pp. 213-236 ◽  
Author(s):  
Weiwei Guo ◽  
He Xia ◽  
Raid Karoumi ◽  
Tian Zhang ◽  
Xiaozhen Li

2013 ◽  
Vol 13 (03) ◽  
pp. 1250064 ◽  
Author(s):  
CHAOYI XIA ◽  
HE XIA ◽  
NAN ZHANG ◽  
WEIWEI GUO

A dynamic analysis model is established for a coupled high-speed train and bridge system subjected to collision loads. A 5 × 32 m continuous high-speed railway bridge with PC box girders is considered in the illustrative case study. Entire histories of a CRH2 high-speed EMU train running on the bridge are simulated when the truck collision load acts on the bridge pier, from which the dynamic responses such as displacements and accelerations of the bridge, and the running safety indices such as derailment factors, offload factors and lateral wheel/rail forces of the train are computed. For the case study, the running safety indices of the train at different speeds on the bridge when its pier is subjected to a truck collision with different intensities are compared with the corresponding allowances of the Chinese Codes. The results show that the dynamic response of the bridge subjected to truck collision loads is much greater than the one without collision, which can drastically influence the running safety of high-speed trains.


Sign in / Sign up

Export Citation Format

Share Document