Stability of real-time hybrid simulation involving time-varying delay and direct integration algorithms

2021 ◽  
pp. 107754632110016
Author(s):  
Liang Huang ◽  
Cheng Chen ◽  
Shenjiang Huang ◽  
Jingfeng Wang

Stability presents a critical issue for real-time hybrid simulation. Actuator delay might destabilize the real-time test without proper compensation. Previous research often assumed real-time hybrid simulation as a continuous-time system; however, it is more appropriately treated as a discrete-time system because of application of digital devices and integration algorithms. By using the Lyapunov–Krasovskii theory, this study explores the convoluted effect of integration algorithms and actuator delay on the stability of real-time hybrid simulation. Both theoretical and numerical analysis results demonstrate that (1) the direct integration algorithm is preferably used for real-time hybrid simulation because of its computational efficiency; (2) the stability analysis of real-time hybrid simulation highly depends on actuator delay models, and the actuator model that accounts for time-varying characteristic will lead to more conservative stability; and (3) the integration step is constrained by the algorithm and structural frequencies. Moreover, when the step is small, the stability of the discrete-time system will approach that of the corresponding continuous-time system. The study establishes a bridge between continuous- and discrete-time systems for stability analysis of real-time hybrid simulation.

2013 ◽  
Vol 12 (2) ◽  
pp. 15
Author(s):  
T. BAKHTIAR ◽  
S. SAMSURIZAL ◽  
N. ALIATININGTYAS

It is well-known that in control theory the stability region of continuous- time system is laid in the left half plane of complex space, while that of discrete-time system is dwelled inside a unit circle. The former fact might be shown by exploiting the Laplace transform and the later by utilizing the corresponding zeta transform. In this paper we revealed the connectivity of both regions by employing M¨obius transform. We also used the same transform to derive continuous/discrete-time counterpart of several existing results, including Bode integral and Poisson-Jensen formula. We then demonstrated their unification property by using delta transform. Some numerical examples were provided to verify our results.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Liyuan Hou ◽  
Hong Zhu

This paper investigates the stability of stochastic discrete-time neural networks (NNs) with discrete time-varying delays and leakage delay. As the partition of time-varying and leakage delay is brought in the discrete-time system, we construct a novel Lyapunov-Krasovskii function based on stability theory. Furthermore sufficient conditions are derived to guarantee the global asymptotic stability of the equilibrium point. Numerical example is given to demonstrate the effectiveness of the proposed method and the applicability of the proposed method.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Wei Kang ◽  
Hao Chen ◽  
Kaibo Shi ◽  
Jun Cheng

This paper investigates the problem of reachable set bounding for discrete-time system with time-varying delay and bounded disturbance inputs. Together with a new Lyapunov-Krasovskii functional, discrete Wirtinger-based inequality, and reciprocally convex approach, sufficient conditions are derived to find an ellipsoid to bound the reachable sets of discrete-time delayed system. The main advantage of this paper lies in two aspects: first, the initial state vectors are not necessarily zero; second, the obtained criteria in this paper do not really require all the symmetric matrices involved in the employed Lyapunov-Krasovskii functional to be positive definite. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed method.


2002 ◽  
Vol 44 (2) ◽  
pp. 261-282 ◽  
Author(s):  
S. Mohamad ◽  
K. Gopalsamy

We consider the dynamical characteristics of a continuous-time isolated Hopfield-type neuron subjected to an almost periodic external stimulus. The model neuron is assumed to be dissipative having finite time delays in the process of encoding the external input stimulus and recalling the encoded pattern associated with the external stimulus. By using non-autonomous Halanay-type inequalities we obtain sufficient conditions for the hetero-associative stable encoding of temporally non-uniform stimuli. A brief study of a discrete-time model derived from the continuous-time system is given. It is shown that the discrete-time model preserves the stability conditions of the continuous-time system.


1984 ◽  
Vol 16 (1) ◽  
pp. 15-16
Author(s):  
A. Hordijk ◽  
F. A. Van Der Duyn Schouten

The method of discrete-time approximation is widespread in control and decision theory. However, little attention has been paid to the conditions on parameters and control under which the discrete-time systems come close to the continuous-time system.


Sign in / Sign up

Export Citation Format

Share Document