Load noise prediction of a power transformer

2021 ◽  
pp. 107754632110368
Author(s):  
Booyeong Lee ◽  
Kyuho Lee ◽  
Chuljun Park ◽  
Seokwon Ryu ◽  
Jintai Chung

In this article, we propose a new regression equation to predict the noise of a power transformer based on the winding vibration under a loading condition. A regression between load noises and tank vibrations for multiple transformers with different rated powers was confirmed through measurements and regression analysis. A regression equation for load noise and winding vibration was derived considering the fact that the winding vibration level is proportional to the tank vibration level. The electromagnetic force, which is the excitation force of the winding, was obtained using the equivalent magnetic circuit network method to obtain the winding vibration required for the regression equation. Subsequently, the obtained force was applied to a finite element model for the winding to achieve the vibration response. The winding vibration obtained through these methods is closely correlated with the load noise, and the amount of winding vibration transferred to the tank could be changed according to the distance between the tank and the winding. Accordingly, an equation for predicting the load noise was established considering the winding vibration and the correlation factors according to the distance of the transmission path. The proposed prediction equation is considerably more accurate than the previous prediction equation.


Author(s):  
Abul Fazal M. Arif ◽  
Ahmad S. Al-Omari ◽  
Anwar K. Sheikh ◽  
Yagoub Al-Nassar ◽  
M. Anis

Double submerged spiral-welded pipe (SWP) is used extensively throughout the world for large-diameter pipelines. Fabrication-induced residual stresses in spiral welded pipe have received increasing attention in gas, oil and petrochemical industry. Several studies reported in the literature verify the critical role of residual stresses in the failure of these pipes. Therefore, it is important that such stresses are accounted for in safety assessment procedures such as the British R6 and BS7910. This can be done only when detailed information on the residual stress distribution in the component is known. In industry, residual stresses in spiral welded pipe are measured experimentally by means of destructive techniques known as Ring Splitting Test. In this study, statistical analysis and linear-regression modeling were used to study the effect of several structural, material and welding parameters on ring splitting test opening for spiral welded pipes. The experimental results were employed to develop an appropriate regression equation, and to predict the residual stress on the spiral welded pipes. It was found that the developed regression equation explains 36.48% of the variability in the ring opening. In the second part, a 3-D finite element model is presented to perform coupled-field analysis of the welding of spiral pipe. Using this model, temperature as well as stress fields in the region of the weld edges is predicted.



2018 ◽  
Vol 34 (3) ◽  
pp. 1515-1541 ◽  
Author(s):  
Guo-Liang Ma ◽  
Qiang Xie ◽  
Andrew S. Whittaker

Power transformers and bushings are key pieces of substation equipment and are vulnerable to the effects of earthquake shaking. The seismic performance of a 1,100 kV bushing, used in an ultra-high voltage (UHV) power transformer, is studied using a combination of physical and numerical experiments. The physical experiments utilized an earthquake simulator and included system identification and seismic tests. Modal frequencies and shapes are derived from white noise tests. Acceleration, strain, and displacement responses are obtained from the uniaxial horizontal seismic tests. A finite element model of the 1,100 kV bushing is developed and analyzed, and predicted and measured results are compared. There is reasonably good agreement between predicted and measured responses, enabling the finite element model to be used with confidence for seismic vulnerability studies of transformer-bushing systems. A coupling of the experimental and numerical simulations enabled the vertically installed UHV bushing to be seismically qualified for three-component ground shaking with a horizontal zero-period acceleration of 0.53 g.



2013 ◽  
Vol 291-294 ◽  
pp. 1029-1038
Author(s):  
Ming Liu ◽  
Bao Feng Song ◽  
Daniel Dias ◽  
Jing Pan

Aiming at masonry structure housing, establish the structure reliability evaluation index system. Subsidiary factors index dimensionless processing, the traditional matter-element model is analyzed, and based on this, the article puts forward an improved correlation functions, establish correlation function of the correlation factors of the index layer. Consider the weight coefficients of members,gave the extension index,combining analysis of the structural member reliability and extension comprehensive evaluation of the integral structural reliability, establish the masonry structure housing reliability assessment method framework. And prove the feasibility of this method through engineering examples.



2012 ◽  
Vol 468-471 ◽  
pp. 1086-1089 ◽  
Author(s):  
Yong Ming Xu ◽  
Chao Du ◽  
Da Wei Meng

The problem about the eddy current loss which is caused by leakage magnetic field in ultrahigh pressure large capacity power transformer is becoming more extrusive. It is very significant to research the power transformer leakage magnetic field and eddy current loss on the tank wall thoroughly and accurately. 3D finite element model of power transformer leakage magnetic field and eddy current loss is established in this paper, the eddy current loss on the tank wall is calculated and the distribution is analyzed. For the eddy current loss could be reduced by magnetic shielding, new calculation model are established respectively, then eddy current loss on tank wall could be got with shielding. The best size and location of the shielding could be analyzed after changing the height of the shielding, which provided the important evidence to reduce tank wall eddy current loss effectively. The calculating methods have been proved to be accuracy after experiment.





Author(s):  
Matteo Vagnoli ◽  
Rasa Remenyte-Prescott ◽  
John Andrews

Bridges are one of the most important assets of transportation networks. A closure of a bridge can increase the vulnerability of the geographic area served by such networks, as it reduces the number of available routes. Condition monitoring and deterioration detection methods can be used to monitor the health state of a bridge and enable detection of early signs of deterioration. In this paper, a novel Bayesian Belief Network (BBN) methodology for bridge deterioration detection is proposed. A method to build a BBN structure and to define the Conditional Probability Tables (CPTs) is presented first. Then evidence of the bridge behaviour (such as bridge displacement or acceleration due to traffic) is used as an input to the BBN model, the probability of the health state of whole bridge and its elements is updated and the levels of deterioration are detected. The methodology is illustrated using a Finite Element Model (FEM) of a steel truss bridge, and for an in-field post-tensioned concrete bridge.



2013 ◽  
Vol 482 ◽  
pp. 155-162
Author(s):  
Si Hui Xu ◽  
Xiao Hui Zhang ◽  
Han Chen

In order to study the effects of high-speed railway in tunnel on vibration response of upper building, the Vehicle-Track-Tunnel-Soil-Building coupling dynamic model was established, and the reaction force of fasteners was used to transmit between Vehicle-Track coupling dynamic model and Tunnel-Soil-Building finite element model. According to modal analysis for typical section of building, sensitive frequency range and sensitive structure locations were obtained. In terms of two conditions, Tunnel-Building Integrated Structure and building are evaded from tunnel for some distance, 1/3 octave vibration level and VLZ vibration acceleration level for all measuring points were calculated to analyze the vibration response of building. The results are shown as follows: for Tunnel-Building Integrated Structure, the overall vibration level is high,which is above 65dB. 2-3dB will be reduced by decreasing speed and improving standard of track. when building is evaded from tunnel for some distance, with larger evaded distance, the vibration response is slighter. However, when evaded distance is above 30m, vibration may be amplified ,so its necessary to select proper distance. Vibration response of structure is most strong when 4 lines meet under building, so strict limitation on meeting condition of trains can effectively reduce vibration level.





Sign in / Sign up

Export Citation Format

Share Document