Nonlinear dynamics and control of helicopter ground resonance

2021 ◽  
pp. 107754632199693
Author(s):  
Jayachandran Warrier ◽  
Shaikh Faruque Ali

Ground resonance is an aero-mechanical instability in helicopters that use soft in-plane rotors. Traditionally, ground resonance is mitigated by using passive lead–lag dampers that provide sufficient in-plane damping. However, these dampers because of their passive nature cannot adapt to all operating conditions. In this work, a magnetorheological fluid–based semi-active lead–lag damper is proposed to offer controllable damping. Two nonlinear control strategies are reported to operate the voltage to be supplied to the magnetorheological damper. The first strategy is a model-based control using dynamic inversion. The second is a fuzzy logic control integrated with a particle swarm optimization algorithm to optimize the control parameters. Both control strategies are shown to be effective in eliminating ground resonance. Unlike bang–bang control, the prescribed control algorithms can make use of complete voltage level available in the magnetorheological damper with smooth voltage updates. A comparative study of the controller performances is made through appropriate performance indices and system responses. Finally, the most optimum control strategy to mitigate ground resonance is inferred.

Author(s):  
Arjun Krishnan ◽  
Ashwin Krishnan ◽  
Mark Costello

This article examines the fundamental aspects of controlling ground resonance in rotorcraft equipped with actively controlled landing gear. Ground resonance is a mechanical instability affecting rotorcraft on the ground. It occurs at certain rotor speeds, where the lead–lag motion of the rotor couples with the motion of fuselage creating a self-excited oscillation. Typically, passive or semi-active lag dampers are used to avoid instability; however, these are undesirable from a design and maintenance perspective. Innovations in active landing gear for rotorcraft, such as articulated robotic legs, have provided an alternate approach to avoid the instability, eliminating the need for lag dampers with respect to ground resonance. This article extends classic ground resonance to include movable landing gear and identifies key physical parameters affecting dynamic behavior. Applying LQ optimal control to this model, it is shown that ground resonance instability can be eliminated using active landing gear as the control mechanism, even when there is no lag damping present in the rotor. In addition, while superior performance is achieved when landing gear movement can occur both longitudinally and laterally, it is still possible to stabilize ground resonance with inputs in a single direction, albeit with reduced performance.


2010 ◽  
Vol 37-38 ◽  
pp. 1433-1436 ◽  
Author(s):  
Yan Qing Wang ◽  
Gao Yan Zhong ◽  
Yong Biao Chang ◽  
Guo Xin Liu

In this paper, the existing research and key technologies of 4-DOF parallel robot are reviewed, i.e., mechanism, kinematics, singularity, workspace, dexterity, dynamics and control. Most of them are focused on mechanism and kinematics. The study in dynamics and control is relatively rare and not mature in practice, especially in how to optimize the control strategies to improve its performance. Finally, the research trend and unsolved problem of 4-DOF parallel robot is described.


2018 ◽  
Vol 449 ◽  
pp. 35-52 ◽  
Author(s):  
Andrew L. Krause ◽  
Lawrence Kurowski ◽  
Kamran Yawar ◽  
Robert A. Van Gorder

2011 ◽  
Vol 2011 ◽  
pp. 1-15 ◽  
Author(s):  
Krzysztof Kecik ◽  
Jerzy Warminski

This paper presents vibration analysis of an autoparametric pendulum-like mechanism subjected to harmonic excitation. To improve dynamics and control motions, a new suspension composed of a semiactive magnetorheological damper and a nonlinear spring is applied. The influence of essential parameters such as the nonlinear damping or stiffness on vibration, near the main parametric resonance region, are carried out numerically and next verified experimentally in a special experimental rig. Results show that the magnetorheological damper, together with the nonlinear spring can be efficiently used to change the dynamic behaviour of the system. Furthermore, the nonlinear elements applied in the suspension of the autoparametric system allow to reduce the unstable areas and chaotic or rotating motion of the pendulum.


Author(s):  
John T. Cameron ◽  
Sean Brennan

This work presents results of an initial investigation into models and control strategies suitable to prevent vehicle rollover due to untripped driving maneuvers. Outside of industry, the study of vehicle rollover inclusive of both experimental validation and practical controller design is limited. The researcher interested in initiating study on rollover dynamics and control is left with the challenging task of identifying suitable vehicle models from the literature, comparing these models with experimental results, and determining suitable parameters for the models. This work addresses these issues via experimental testing of published models. Parameter estimation data based on model fits is presented, with commentary given on the validity of different methods. Experimental results are then presented and compared to the output predicted by the various models in both the time and frequency domain in order to provide a foundation for future work.


2021 ◽  
Vol 15 (5) ◽  
pp. e0009449
Author(s):  
Maylis Layan ◽  
Simon Dellicour ◽  
Guy Baele ◽  
Simon Cauchemez ◽  
Hervé Bourhy

Background Rabies is a fatal yet vaccine-preventable disease. In the last two decades, domestic dog populations have been shown to constitute the predominant reservoir of rabies in developing countries, causing 99% of human rabies cases. Despite substantial control efforts, dog rabies is still widely endemic and is spreading across previously rabies-free areas. Developing a detailed understanding of dog rabies dynamics and the impact of vaccination is essential to optimize existing control strategies and developing new ones. In this scoping review, we aimed at disentangling the respective contributions of mathematical models and phylodynamic approaches to advancing the understanding of rabies dynamics and control in domestic dog populations. We also addressed the methodological limitations of both approaches and the remaining issues related to studying rabies spread and how this could be applied to rabies control. Methodology/principal findings We reviewed how mathematical modelling of disease dynamics and phylodynamics have been developed and used to characterize dog rabies dynamics and control. Through a detailed search of the PubMed, Web of Science, and Scopus databases, we identified a total of n = 59 relevant studies using mathematical models (n = 30), phylodynamic inference (n = 22) and interdisciplinary approaches (n = 7). We found that despite often relying on scarce rabies epidemiological data, mathematical models investigated multiple aspects of rabies dynamics and control. These models confirmed the overwhelming efficacy of massive dog vaccination campaigns in all settings and unraveled the role of dog population structure and frequent introductions in dog rabies maintenance. Phylodynamic approaches successfully disentangled the evolutionary and environmental determinants of rabies dispersal and consistently reported support for the role of reintroduction events and human-mediated transportation over long distances in the maintenance of rabies in endemic areas. Potential biases in data collection still need to be properly accounted for in most of these analyses. Finally, interdisciplinary studies were determined to provide the most comprehensive assessments through hypothesis generation and testing. They also represent new avenues, especially concerning the reconstruction of local transmission chains or clusters through data integration. Conclusions/significance Despite advances in rabies knowledge, substantial uncertainty remains regarding the mechanisms of local spread, the role of wildlife in dog rabies maintenance, and the impact of community behavior on the efficacy of control strategies including vaccination of dogs. Future integrative approaches that use phylodynamic analyses and mechanistic models within a single framework could take full advantage of not only viral sequences but also additional epidemiological information as well as dog ecology data to refine our understanding of rabies spread and control. This would represent a significant improvement on past studies and a promising opportunity for canine rabies research in the frame of the One Health concept that aims to achieve better public health outcomes through cross-sector collaboration.


Sign in / Sign up

Export Citation Format

Share Document