scholarly journals Systematic study of homogenization and the utility of circular simplified representative volume element

2019 ◽  
Vol 24 (9) ◽  
pp. 2961-2985 ◽  
Author(s):  
Soheil Firooz ◽  
Saba Saeb ◽  
George Chatzigeorgiou ◽  
Fodil Meraghni ◽  
Paul Steinmann ◽  
...  

Although both computational and analytical homogenization are well-established today, a thorough and systematic study to compare them is missing in the literature. This manuscript aims to provide an exhaustive comparison of numerical computations and analytical estimates, such as Voigt, Reuss, Hashin–Shtrikman, and composite cylinder assemblage. The numerical computations are associated with canonical boundary conditions imposed on either tetragonal, hexagonal, or circular representative volume elements using the finite-element method. The circular representative volume element is employed to capture an effective isotropic material response suitable for comparison with associated analytical estimates. The analytical results from composite cylinder assemblage are in excellent agreement with the numerical results obtained from a circular representative volume element. We observe that the circular representative volume element renders identical responses for both linear displacement and periodic boundary conditions. In addition, the behaviors of periodic and random microstructures with different inclusion distributions are examined under various boundary conditions. Strikingly, for some specific microstructures, the effective shear modulus does not lie within the Hashin–Shtrikman bounds. Finally, numerical simulations are carried out at finite deformations to compare different representative volume element types in the nonlinear regime. Unlike other canonical boundary conditions, the uniform traction boundary conditions result in nearly identical effective responses for all types of representative volume element, indicating that they are less sensitive with respect to the underlying microstructure. The numerical examples furnish adequate information to serve as benchmarks.

2019 ◽  
Vol 11 (01) ◽  
pp. 1950002
Author(s):  
M. M. Shahzamanian ◽  
W. J. Basirun

This study uses the finite element method (FEM) to measure the mechanical properties of microstructure-based cementitious representative volume elements (RVEs) with various water–cement ratios (W/Cs) generated by CEMHYD3D. The finite element boundary condition effects that significantly and computationally change the elastic properties are studied and discussed. Various boundary conditions in ABAQUS are applied and compared with the results obtained using the variational asymptotic method for unit cell homogenization (VAMUCH). This comparison is conducted using ANSYS. This study aims to analyze and determine the effect of different boundary conditions in detail on the prediction of the elastic properties of cementitious RVE with various W/Cs and identify the best approach in this regard. Results show that Young’s, shear, and bulk moduli decrease with the increase in W/C and the boundary conditions in ABAQUS influence the outcomes, particularly on bulk modulus and Poisson’s ratio.


2016 ◽  
Vol 51 (12) ◽  
pp. 1783-1794 ◽  
Author(s):  
Ahmad Reza Ghasemi ◽  
Mohammad Mohammadi Fesharaki ◽  
Masood Mohandes

In this study, circular disk model and cylinder theory for two dimension (2D) and three dimension (3D), respectively, have been used to determine residual stresses in three-phase representative volume element. The representative volume element is consisting of three phases: carbon fiber, carbon nanotubes, and polymer matrix, that carbon fiber is reinforced by carbon nanotube using electrophoresis method. Initially, the residual stresses analysis of two-phase representative volume element has been implemented. The two-phase representative volume element has been divided to carbon fiber and matrix phases with different volume fractions. In the three-phase representative volume element, although the volume fraction of carbon fiber is constant and equal to 60%, the volume fractions of carbon nanotubes for various cases are different as 0%, 1%, 2%, 3%, 4%, and 5%. Also, there are two different methods to reinforce the fiber according to different coefficients of thermal expansion of the carbon fiber and carbon nanotube in two longitudinal and transverse directions; carbon nanotubes are placed on carbon fiber either parallel or around it like a ring. Subsequently, finite element method and circular disk model have been used for analyzing micromechanic of the residual stresses for 2D and then the results of stress invariant obtained by the finite element method have been compared with the circular disk model. Moreover, for 3D model, the finite element method and cylinder theory have been utilized for micromechanical analysis of the residual stresses and the results of stress invariant obtained by them, have been compared with each other. Results of the finite element method and analytical model have good agreement in 2D and 3D models.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1474 ◽  
Author(s):  
Małgorzata Chwał ◽  
Aleksander Muc

The application of numerical homogenization and optimization in the design of micro- and nanocomposite reinforcement is presented. The influence of boundary conditions, form of a representative volume element, shape and distribution of reinforcement are distinguished as having the crucial influence on a design of the reinforcement. The paper also shows that, in the optimization problems, the distributions of any design variables can be expressed by n-dimensional curves. It applies not only to the tasks of optimizing the shape of the edge of the structure or its mid-surface but also dimensional optimization or topology/material optimization. It is shown that the design of reinforcement may be conducted in different ways and 2D approaches may be expanding to 3D cases.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1009
Author(s):  
Arkadiusz Denisiewicz ◽  
Mieczysław Kuczma ◽  
Krzysztof Kula ◽  
Tomasz Socha

Concrete is the most widely used construction material nowadays. We are concerned with the computational modelling and laboratory testing of high-performance concrete (HPC). The idea of HPC is to enhance the functionality and sustainability of normal concrete, especially by its greater ductility as well as higher compressive, tensile, and flexural strengths. In this paper, the influence of three types (linear displacement, uniform traction, and periodic) of boundary conditions used in numerical homogenization on the calculated values of HPC properties is determined and compared with experimental data. We take into account the softening behavior of HPC due to the development of damage (micro-cracks), which finally leads to failure. The results of numerical simulations of the HPC samples were obtained by using the Abaqus package that we supplemented with our in-house finite element method (FEM) computer programs written in Python and the homogenization toolbox Homtools. This has allowed us to better account for the nonlinear response of concrete. In studying the microstructure of HPC, we considered a two-dimensional representative volume element using the finite element method. Because of the random character of the arrangement of concrete’s components, we utilized a stochastic method to generate the representative volume element (RVE) structure. Different constitutive models were used for the components of HPC: quartz sand—linear elastic, steel fibers—ideal elastic-plastic, and cement matrix—concrete damage plasticity. The numerical results obtained are compared with our own experimental data and those from the literature, and a good agreement can be observed.


2017 ◽  
Vol 08 (02) ◽  
pp. 1750003 ◽  
Author(s):  
M. M. Shahzamanian ◽  
W. J. Basirun

CEMHYD3D has been employed to simulate the representative volume element (RVE) of cementitious systems (Type I cement) containing fly ash (Class F) through a voxel-based finite element analysis (FEA) approach. Three-dimensional microstructures composed of voxels are generated for a heterogeneous cementitious material consisting of various constituent phases. The primary focus is to simulate a cementitious RVE containing fly ash and to present the homogenized macromechanical properties obtained from its analysis. Simple kinematic uniform boundary conditions as well as periodic boundary conditions were imposed on the RVE to obtain the principal and shear moduli. Our current work considers the effect of fly ash percentage on the elastic properties based on the mass and volume replacements. RVEs with lengths of 50, 100 and 200[Formula: see text][Formula: see text] at different degrees of hydration are generated, and the elastic properties are modeled and simulated. In general, the elastic properties of a cementitious RVE with fly ash replacement for cement based on mass and volume differ from each other. Moreover, the finite element (FE) mesh density effect is studied. Results indicate that mechanical properties decrease with increasing mesh density.


2018 ◽  
Vol 52 (21) ◽  
pp. 2919-2928 ◽  
Author(s):  
Dhirendra V Kubair ◽  
Maxwell Pinz ◽  
Kaitlin Kollins ◽  
Craig Przybyla ◽  
Somnath Ghosh

The property-based statistically equivalent RVE or P-SERVE has been introduced in the literature as the smallest microstructural volume element in non-uniform microstructures that has effective material properties equivalent to those of the entire microstructure. An important consideration is the application of appropriate boundary conditions for optimal property-based statistically equivalent representative volume element domains. The exterior statistics-based boundary conditions have been developed, accounting for the statistics of fiber distributions and interactions in the domain exterior to the property-based statistically equivalent representative volume element. This paper is intended to validate the efficacy of the exterior statistics-based boundary condition-based property-based statistically equivalent representative volume elements for evaluating homogenized stiffnesses of a unidirectional polymer matrix composite with a polydispersed microstructure characterized by nonuniform dispersion of carbon fibers of varying sizes in an epoxy matrix. Experimental tests and microstructural characterization of the polymer matrix composite are conducted for calibration and validation of the model. Statistically equivalent microstructural volume elements are constructed from experimental micrographs for direct numerical simulations. The performance of the property-based statistically equivalent representative volume element with exterior statistics-based boundary conditions is compared with other boundary conditions, as well as with the statistical volume elements. The tests clearly show the significant advantages of the exterior statistics-based boundary conditions in terms of accuracy of the homogenized stiffness and efficiency.


Sign in / Sign up

Export Citation Format

Share Document