Three-dimensional thermo-electro-elastic field in one-dimensional hexagonal piezoelectric quasi-crystal weakened by an elliptical crack

2021 ◽  
pp. 108128652110592
Author(s):  
Yuwei Liu ◽  
Xuesong Tang ◽  
Peiliang Duan ◽  
Tao Wang ◽  
Peidong Li

In this paper, an analytical solution is developed for the problem of an infinite 1D hexagonal piezoelectric quasi-crystal medium weakened by an elliptical crack and subjected to mixed loads on the crack surfaces. The mixed loads comprise the phonon pressure, phason pressure, electric displacement, and temperature increment, and the crack surfaces can be electrically permeable or impermeable. Based on a general solution, combined with the generalized potential theory, the steady-state 3D thermo-electro-elastic field variables in the quasi-crystal are obtained in terms of elliptic integral functions and elementary functions. Several important physical quantities on the cracked plane, such as the generalized crack surface displacements, normal stresses, and stress intensity factors, are derived in closed forms. An illustrative numerical calculation verifies the presented analytical solution and shows the distribution of the 3D thermo-electro-elastic field. It is indicated that the influence of the phason field on the result is pronounced, especially for the electric field variables, and the electric permeability of crack surfaces has a significant effect on the electric displacement intensity factor at the crack tip.


1995 ◽  
Vol 62 (3) ◽  
pp. 557-565 ◽  
Author(s):  
M. T. Hanson

This paper considers point force or point moment loading applied to the surface of a three-dimensional wedge. The wedge is two-dimensional in geometry but the loading may vary in a direction parallel to the wedge apex, thus creating a three-dimensional problem within the realm of linear elasticity. The wedge is homogeneous, isotropic, and the assumption of incompressibility is taken in order for solutions to be obtained. The loading cases considered presently are as follows: point normal loading on the wedge face, point moment loading on the wedge face, and an arbitrarily directed force or moment applied at a point on the apex of the wedge. The solutions given here are closed-form expressions. For point force or point moment loading on the wedge face, the elastic field is given in terms of a single integral containing associated Legendre functions. When the point force or moment is at the wedge tip, closed-form (nonintegral) expressions are obtained in terms of elementary functions. An interesting result of the present research indicates that the wedge paradox in two-dimensional elasticity also exists in the three-dimensional case for a concentrated moment at the wedge apex applied in one direction, but that it does not exist for a moment applied in the other two directions.





Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 73
Author(s):  
Panagiotis Sitarenios ◽  
Francesca Casini

This paper presents a three-dimensional slope stability limit equilibrium solution for translational planar failure modes. The proposed solution uses Bishop’s average skeleton stress combined with the Mohr–Coulomb failure criterion to describe soil strength evolution under unsaturated conditions while its formulation ensures a natural and smooth transition from the unsaturated to the saturated regime and vice versa. The proposed analytical solution is evaluated by comparing its predictions with the results of the Ruedlingen slope failure experiment. The comparison suggests that, despite its relative simplicity, the analytical solution can capture the experimentally observed behaviour well and highlights the importance of considering lateral resistance together with a realistic interplay between mechanical parameters (cohesion) and hydraulic (pore water pressure) conditions.



1998 ◽  
Vol 46 (3) ◽  
pp. 283-305
Author(s):  
Nguyen X. Vinh ◽  
Pierre T. Kabamba ◽  
Tetsuya Takehira


2009 ◽  
Vol 32 (6) ◽  
pp. 925-935 ◽  
Author(s):  
Mohammad Mahdi Sedghi ◽  
Nozar Samani ◽  
Brent Sleep


Sign in / Sign up

Export Citation Format

Share Document