scholarly journals The Hydromechanical Interplay in the Simplified Three-Dimensional Limit Equilibrium Analyses of Unsaturated Slope Stability

Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 73
Author(s):  
Panagiotis Sitarenios ◽  
Francesca Casini

This paper presents a three-dimensional slope stability limit equilibrium solution for translational planar failure modes. The proposed solution uses Bishop’s average skeleton stress combined with the Mohr–Coulomb failure criterion to describe soil strength evolution under unsaturated conditions while its formulation ensures a natural and smooth transition from the unsaturated to the saturated regime and vice versa. The proposed analytical solution is evaluated by comparing its predictions with the results of the Ruedlingen slope failure experiment. The comparison suggests that, despite its relative simplicity, the analytical solution can capture the experimentally observed behaviour well and highlights the importance of considering lateral resistance together with a realistic interplay between mechanical parameters (cohesion) and hydraulic (pore water pressure) conditions.

Author(s):  
Panagiotis Sitarenios ◽  
Francesca Casini

The paper presents a three-dimensional slope stability limit equilibrium solution for translational, planar failure modes. The proposed solution uses Bishop’s average skeleton stress combined with the Mohr – Coulomb failure criterion to describe soil strength evolution under unsaturated conditions while its formulation ensures a natural and smooth transition from the unsaturated to the saturated regime and vice versa. The proposed analytical solution is evaluated by comparing its predictions with the results of the Ruedlingen slope failure experiment [1]. The comparison suggests that despite its relative simplicity the analytical solution can capture well the experimentally observed behaviour and highlights the importance of lateral resistance consideration together with a realistic interplay between mechanical parameters (cohesion) and hydraulic (pore water pressure) conditions.


2019 ◽  
Vol 8 (4) ◽  
pp. 7143-7147

The slippery of natural slope is sometimes ruled by combination of soil parameters and earthquake characteristics. Geotextiles could be a reinforcing materials and an application in numerous areas still as in geotechnical application to supply additional lateral restraint and forestall the high rise hill from failure. The analysis was aimed to analyze slope stability analysis, strengthened the Finite slope with non-woven geotextiles. The modal of hill was created within the SLOPE/W software system of GeoStudio that is predicated on limit equilibrium of slope analysis. The results of issue of safety square measure compared while not and with use of geotextiles in several layers. The issue of safety of slope failure will increase from three.437M to 9.978M victimization 3 layers of geotextiles at optimum height. Thus, this study confirms that the non-woven geotextiles may be applied in slope so as to enhance the soundness of natural or mam-made slope. During this regard, special stress is given to the sensitivity of the Calculation model input parameters like friction angle, cohesion, Pore water pressure and unit weight of soil that ought to contribute to raising awareness regarding these problems, as a requirement to create the proper selections and optimum technical resolution during this space.


1993 ◽  
Vol 30 (3) ◽  
pp. 491-505 ◽  
Author(s):  
Delwyn G. Fredlund ◽  
Zai Ming Zhang ◽  
Karen Macdonald

The stability of potash tailings piles is investigated using a pore-water pressure generation and dissipation model together with a limit equilibrium analysis. It is found that a shallow toe failure mode is generally the most applicable and that the stability may be influenced by pore-water pressure migration below the pile. It is suggested that field studies would be useful in evaluating stability in the toe region of the pile. Key words : potash tailings, slope stability, pore pressure dissipation, solutioning.


2005 ◽  
Vol 2 ◽  
pp. 305-308 ◽  
Author(s):  
S. Dapporto ◽  
P. Aleotti ◽  
N. Casagli ◽  
G. Polloni

Abstract. On 14-16 November 2002 the North Italy was affected by an intense rainfall event: in the Albaredo valley (Valtellina) more than 200 mm of rain fell triggering about 50 shallow landslides, mainly soil slips and soil slip-debris flows. Landslides occurred above the critical rainfall thresholds computed by Cancelli and Nova (1985) and Ceriani et al. (1994) for the Italian Central Alps: in fact the cumulative precipitation at the soil slips initiation time was 230 mm (in two days) with a peak intensity of 15 mm/h. A coupled analysis of seepage and instability mechanisms is performed in order to evaluate the potential for slope failure during the event. Changes in positive and negative pore water pressures during the event are modelled by a finite element analysis of water flow in transient conditions, using as boundary condition for the nodes along the slope surface the recorded rainfall rate. The slope stability analysis is conducted applying the limit equilibrium method, using pore water pressure distributions obtained in the different time steps by the seepage analysis as input data for the calculation of the factor of safety.


2011 ◽  
Vol 71-78 ◽  
pp. 4864-4867
Author(s):  
Guang Hua Cai ◽  
Hai Jun Lu ◽  
Wei He ◽  
Long Guan ◽  
Wei Qi Xu

Rainfall infiltration is currently one of the important factors in studying the soil-slope stability. By using saturated-unsaturated seepage theory, the traditional limit equilibrium method and so on, analyze the water content and the pore-water pressure changes under the rainfall condition, then analyze the influence mechanism of the slope stability. Through the Seep/W and the Slope/W of the GEO-Slope software, do the numerical simulation of the slope stability under the rainfall condition, to seek the distribution of pore-water pressure on the rainfall situation and the influence of the seepage field from various parameters such as rainfall intensity and the soil permeability coefficient, thus to study the slope stability.


2015 ◽  
Vol 3 (6) ◽  
pp. 4159-4187
Author(s):  
M. C. Park

Abstract. In this study, we performed a model slope experiment with rainfall seepage, and the results were compared and verified with the unsaturated slope stability analysis method. In the model slope experiment, we measured the changes in water content and matric suction due to rainfall seepage, and determined the time at which the slope failure occurred and the shape of the failure. In addition, we compared and verified the changes in the factor of safety and the shape of the failure surface, which was calculated from the unsaturated slope stability analysis with the model experiment. From the results of experiment and analysis, it is concluded that the unsaturated slope stability analysis can be used to accurately analyze and predict rainfall-induced slope failure. It is also concluded that in seepage analysis, setting the initial conditions and boundary conditions is very important. If engineers will use the measured pore water pressure or matric suction, the accuracy of analysis can be enhanced. The real-time monitoring system of pore water pressure or matric suction can be used as a warning of rainfall-induced slope failure.


Symmetry ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1023 ◽  
Author(s):  
Bo Mi ◽  
Yanyong Xiang

The objective was to optimize the existing solution for the limit support pressure of a tunnel face. Firstly, based on the numerical simulation results, the existing three-dimensional analytical solution for pore water pressure distribution is expanded to a three-dimensional solution considering the pore water pressure distribution in the upper formation behind the tunnel face. Then, according to the results of physical model tests, a failure model considering the failure range in the upper formation behind the tunnel face is established, and the newly established three-dimensional solution for pore water pressure is introduced into the model, and then the limit effective support pressure of the tunnel face considering seepage is obtained by the method of soil–water joint calculation. Finally, the calculation results in this paper are compared with the experimental results, numerical simulation results and existing theoretical solutions. The major findings are as follows. The distribution of pore water pressure in the front and back strata above the tunnel face is basically symmetrical. The limit effective support pressure of the tunnel face will increase linearly with an increase in the hydraulic head difference between the tunnel face and the ground surface. The calculated results of the new limit equilibrium theory are obviously larger than those of the existing theory and numerical simulation and closer to the results of the physical model tests. Therefore, the new limit equilibrium model can better predict the limit effective support pressure of the tunnel face considering seepage and provide a reference for actual projects.


2021 ◽  
Vol 2 ◽  
Author(s):  
Aleksandra Svalova ◽  
Peter Helm ◽  
Dennis Prangle ◽  
Mohamed Rouainia ◽  
Stephanie Glendinning ◽  
...  

Abstract We propose using fully Bayesian Gaussian process emulation (GPE) as a surrogate for expensive computer experiments of transport infrastructure cut slopes in high-plasticity clay soils that are associated with an increased risk of failure. Our deterioration experiments simulate the dissipation of excess pore water pressure and seasonal pore water pressure cycles to determine slope failure time. It is impractical to perform the number of computer simulations that would be sufficient to make slope stability predictions over a meaningful range of geometries and strength parameters. Therefore, a GPE is used as an interpolator over a set of optimally spaced simulator runs modeling the time to slope failure as a function of geometry, strength, and permeability. Bayesian inference and Markov chain Monte Carlo simulation are used to obtain posterior estimates of the GPE parameters. For the experiments that do not reach failure within model time of 184 years, the time to failure is stochastically imputed by the Bayesian model. The trained GPE has the potential to inform infrastructure slope design, management, and maintenance. The reduction in computational cost compared with the original simulator makes it a highly attractive tool which can be applied to the different spatio-temporal scales of transport networks.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2729
Author(s):  
Shengyi Cong ◽  
Liang Tang ◽  
Xianzhang Ling ◽  
Wenqiang Xing ◽  
Lin Geng ◽  
...  

Cutting slope failures occur frequently along the high-speed railways in Northeast China during the construction due to snowmelt infiltration. This study addresses this issue by applying a three-dimensional numerical model. The influence of the depth of accumulated snow (ds), daily temperature variation (ΔT), and freeze-thaw (F-T) cycles on the seepage field and stability of cutting slopes is discussed. The results demonstrate that water seepage due to snowmelt infiltration primarily extends through the ground surface by about 10 m. The deep-seated instability is likely to occur under a prolonged and highly accumulated infiltration, while shallow failure is associated with intense, short-duration snowmelt infiltration. The maximum degree of saturation (Sr) and pore-water pressure (PWP) values are observed at the slope toe. Increasing ds and ΔT increase the Sr and PWP due to snowmelt infiltration and thereby decreases cutting slope stability. Compared to the ds and ΔT, the F-T cycle is more likely to cause slope failure. In addition, the F-T cycle also induces the reduction of soil strength and the crack propagation. Overall, the conducted study provided useful help toward the process of safer design for cutting slope along the high-speed railway in seasonally cold regions.


Sign in / Sign up

Export Citation Format

Share Document