An Analysis of the Barkley Deficits in Executive Functioning Scale in a College Population: Does It Predict Symptoms of ADHD Better Than a Visual-Search Task?

2013 ◽  
Vol 21 (7) ◽  
pp. 567-574 ◽  
Author(s):  
Vincent Malik Dehili ◽  
Frances Prevatt ◽  
Theodora P. Coffman

Objective: Executive functioning (EF) deficits have been associated with ADHD. However, disagreement exists concerning the extent to which cognitive tests of EF accurately reflect a diagnosis of ADHD. Barkley developed the Barkley Deficits in Executive Functioning Scale (BDEFS) by categorizing the meta-construct of EF into five subdomains. This study investigated the incremental validity of the BDEFS in predicting symptoms of ADHD compared with a visual-search task. We also investigated patterns among the five BDEFS domains. Method: One hundred and sixteen college students completed a visual-search task and the BDEFS and reported on their symptoms of ADHD. Results: (a) BDEFS total scores significantly predicted total ADHD symptoms, whereas the visual-search task failed to predict ADHD symptoms. (b) The BDEFS demonstrated significant correlations with symptoms of ADHD in expected patterns. Conclusion: This study provides evidence of validity for the BDEFS in a college sample.

2016 ◽  
Vol 22 (10) ◽  
pp. 968-977 ◽  
Author(s):  
Anja Soldan ◽  
Corinne Pettigrew ◽  
Abhay Moghekar ◽  
Marilyn Albert ◽  

AbstractObjectives: Evidence suggests that Alzheimer’s disease (AD) biomarkers become abnormal many years before the emergence of clinical symptoms of AD, raising the possibility that biomarker levels measured in cognitively normal individuals would be associated with cognitive performance many years later. This study examined whether performance on computerized cognitive tests is associated with levels of cerebrospinal fluid (CSF) biomarkers of amyloid, tau, and phosphorylated tau (p-tau) obtained approximately 10 years earlier, when individuals were cognitively normal and primarily middle-aged. Methods: Individuals from the BIOCARD cohort (mean age at testing=69 years) were tested on two computerized tasks hypothesized to rely on brain regions affected by the early accumulation of AD pathology: (1) a Paired Associates Learning (PAL) task (n=67) and (2) a visual search task (n=86). Results: In regression analyses, poorer performance on the PAL task was associated with higher levels of CSF p-tau obtained years earlier, whereas worse performance in the visual search task was associated with lower levels of CSF Aβ1-42. Conclusions: These findings suggest that AD biomarker levels may be differentially predictive of specific cognitive functions many years later. In line with the pattern of early accumulation of AD pathology, the PAL task, hypothesized to rely on medial temporal lobe function, was associated with CSF p-tau, whereas the visual search task, hypothesized to rely on frontoparietal function, was associated with CSF amyloid. Studies using amyloid and tau PET imaging will be useful in examining these hypothesized relationships further. (JINS, 2016, 22, 968–977)


2006 ◽  
Vol 44 (8) ◽  
pp. 1137-1145 ◽  
Author(s):  
Oren Kaplan ◽  
Reuven Dar ◽  
Lirona Rosenthal ◽  
Haggai Hermesh ◽  
Mendel Fux ◽  
...  

2003 ◽  
Vol 41 (10) ◽  
pp. 1365-1386 ◽  
Author(s):  
Steven S. Shimozaki ◽  
Mary M. Hayhoe ◽  
Gregory J. Zelinsky ◽  
Amy Weinstein ◽  
William H. Merigan ◽  
...  

1986 ◽  
Vol 55 (4) ◽  
pp. 696-714 ◽  
Author(s):  
J. van der Steen ◽  
I. S. Russell ◽  
G. O. James

We studied the effects of unilateral frontal eye-field (FEF) lesions on eye-head coordination in monkeys that were trained to perform a visual search task. Eye and head movements were recorded with the scleral search coil technique using phase angle detection in a homogeneous electromagnetic field. In the visual search task all three animals showed a neglect for stimuli presented in the field contralateral to the lesion. In two animals the neglect disappeared within 2-3 wk. One animal had a lasting deficit. We found that FEF lesions that are restricted to area 8 cause only temporary deficits in eye and head movements. Up to a week after the lesion the animals had a strong preference to direct gaze and head to the side ipsilateral to the lesion. Animals tracked objects in contralateral space with combined eye and head movements, but failed to do this with the eyes alone. It was found that within a few days after the lesion, eye and head movements in the direction of the target were initiated, but they were inadequate and had long latencies. Within 1 wk latencies had regained preoperative values. Parallel with the recovery on the behavioral task, head movements became more prominent than before the lesion. Four weeks after the lesion, peak velocity of the head movement had increased by a factor of two, whereas the duration showed a twofold decrease compared with head movements before the lesion. No effects were seen on the duration and peak velocity of gaze. After the recovery on the behavioral task had stabilized, a relative neglect in the hemifield contralateral to the lesion could still be demonstrated by simultaneously presenting two stimuli in the left and right visual hemifields. The neglect is not due to a sensory deficit, but to a disorder of programming. The recovery from unilateral neglect after a FEF lesion is the result of a different orienting behavior, in which head movements become more important. It is concluded that the FEF plays an important role in the organization and coordination of eye and head movements and that lesions of this area result in subtle but permanent changes in eye-head coordination.


Sign in / Sign up

Export Citation Format

Share Document