The Impact of Sleep Deprivation on Continuous Performance Task Among Young Men With ADHD

2020 ◽  
pp. 108705471989781
Author(s):  
Orrie Dan ◽  
Ami Cohen ◽  
Kfir Asraf ◽  
Ivgeny Saveliev ◽  
Iris Haimov

Objective: To identify the impact of sleep deprivation on functioning of young adults with or without ADHD on a continuous performance attention task. Method: Thirty-four men ( M age = 25.38) with ( n = 16) or without ( n = 18) ADHD completed a continuous performance task before and after 25 hr of sustained wakefulness in a controlled environment. Results: In both groups, sleep deprivation caused a decline in performance on all variables: omission errors, commission errors, reaction time, and reaction time variability. In addition, the ADHD group made more omission and commission errors, and had greater reaction time variability. Conclusion: Sleep deprivation has a detrimental effect on attention functioning among young adults. In addition, although young adults with ADHD generally perform worse on continuous performance tasks than young adults without ADHD, the groups are similarly affected by sleep deprivation.

Author(s):  
Yevhen Damanskyy ◽  
Alexander Olsen ◽  
Stig Hollup

AbstractThe present study evaluated whether subjects’ expectations and neurofeedback training performance predict neurofeedback efficacy in cognitive training by controlling both factors as statistical variables. Twenty-two psychology students underwent neurofeedback training, employing beta/theta protocol to enhance beta1 power (13–21 Hz) and suppress theta (4–7 Hz) power. Neurofeedback efficacy was evaluated by behavioral components measured on pre-tests and post-tests employing a visual continuous performance task. The results revealed a significant interaction term between change in reaction time from pre-test to post-test and expectancy effect, indicating that participants with high prognostic expectations showed better improvement in reaction time scores. The data did not reveal that actual neurofeedback performance influenced the post-test measurements of the visual continuous performance task. No significant differences were found for reaction time variability, omission, or commission errors. Possible factors contributing to the results are discussed, and directions for future research are suggested.


2018 ◽  
Vol Volume 14 ◽  
pp. 781-786 ◽  
Author(s):  
Florence Levy ◽  
Andrew Pipingas ◽  
Elizabeth V Harris ◽  
Maree Farrow ◽  
Richard B Silberstein

2007 ◽  
Vol 19 (12) ◽  
pp. 1923-1931 ◽  
Author(s):  
Alexander Strobel ◽  
Gesine Dreisbach ◽  
Johannes Müller ◽  
Thomas Goschke ◽  
Burkhard Brocke ◽  
...  

Although it is widely accepted that serotonin plays a pivotal role in the modulation of anxiety- and depression-related personality traits as well as in the pathogenesis of anxiety disorders and depression, the role of serotonin in cognition is less clear. In the present study, we investigated the involvement of serotonin in cognitive behaviors by examining the impact of genetic variation in key regulators of serotonergic neurotransmission on behavioral measures in a cognitive control task. Eighty-five healthy participants performed a cued continuous performance task (the AX Continuous Performance Task [AXCPT]) and were genotyped for polymorphisms in the transcriptional control regions of the tryptophan hydroxylase 2 gene (TPH2 G-703T; rs4570625) and the serotonin transporter gene (5-HTTLPR). The core result was that individuals lacking the rare TPH2 T allele were not faster than T allele carriers, but committed fewer errors and were less variable in responding. These findings parallel those of a recent study where an enhancement of executive control in individuals without the rare TPH2 T/T genotype was observed. Together with recent evidence that individuals without the T allele exhibit higher scores in anxiety- and depression-related personality traits, our results underscore the role of the TPH2 G-703T polymorphism in the modulation of behavior and raise the intriguing possibility that genetic variants associated with higher negative emotionality may have beneficial effects on some cognitive functions.


Author(s):  
Emily Chappelear ◽  
Cassa Drury

Many people rely on caffeine as part of their daily routine to induce the feeling of wakefulness. However, the effects of caffeine on various brain functions, such as memory, remains unclear. To study the impact of caffeine on memory and attention, we conducted a pilot study on individuals with varying levels of caffeine consumption. Each individual completed a survey, memory test, and reaction time test. The results did not elucidate clear trends or significant differences between those who consumed caffeine and those who did not. This study suggests that caffeine intake does not have a direct impact on memory, but a correlation between reaction time variability and memory suggested that more research could provide deeper insights into the effects of various levels of caffeine consumption.


Author(s):  
Drew McRacken ◽  
Maddie Dyson ◽  
Kevin Hu

Over the past few decades, there has been a significant number of reports that suggested that reaction times for different sensory modalities were different – e.g., that visual reaction time was slower than tactile reaction time. A recent report by Holden and colleagues stated that (1) there has been a significant historic upward drift in reaction times reported in the literature, (2) that this drift or degradation in reaction times could be accounted for by inaccuracies in the methods used and (3) that these inaccurate methods led to inaccurate reporting of differences between visual and tactile based reaction time testing.  The Holden study utilized robotics (i.e., no human factors) to test visual and tactile reaction time methods but did not assess how individuals would perform on different sensory modalities.  This study utilized three different sensory modalities: visual, auditory, and tactile, to test reaction time. By changing the way in which the subjects were prompted and measuring subsequent reaction time, the impact of sensory modality could be analyzed. Reaction time testing for two sensory modalities, auditory and visual, were administered through an Arduino Uno microcontroller device, while tactile-based reaction time testing was administered with the Brain Gauge. A range of stimulus intensities was delivered for the reaction times delivered by each sensory modality. The average reaction time and reaction time variability was assessed and a trend could be identified for the reaction time measurements of each of the sensory modalities. Switching the sensory modality did not result in a difference in reaction time and it was concluded that this was due to the implementation of accurate circuitry used to deliver each test. Increasing stimulus intensity for each sensory modality resulted in faster reaction times. The results of this study confirm the findings of Holden and colleagues and contradict the results reported in countless studies that conclude that (1) reaction times are historically slower now than they were 50 years ago and (2) that there are differences in reaction times for different sensory modalities (vision, hearing, tactile). The implications of this are that utilization of accurate reaction time methods could have a significant impact on clinical outcomes and that many methods in current clinical use are basically perpetuating poor methods and wasting time and money of countless subjects or patients.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
George H. Trksak ◽  
Bethany K. Bracken ◽  
J. Eric Jensen ◽  
David T. Plante ◽  
David M. Penetar ◽  
...  

In cocaine-dependent individuals, sleep is disturbed during cocaine use and abstinence, highlighting the importance of examining the behavioral and homeostatic response to acute sleep loss in these individuals. The current study was designed to identify a differential effect of sleep deprivation on brain bioenergetics, cognitive performance, and sleep between cocaine-dependent and healthy control participants. 14 healthy control and 8 cocaine-dependent participants experienced consecutive nights of baseline, total sleep deprivation, and recovery sleep in the research laboratory. Participants underwent[31]P magnetic resonance spectroscopy (MRS) brain imaging, polysomnography, Continuous Performance Task, and Digit Symbol Substitution Task. Following recovery sleep,[31]P MRS scans revealed that cocaine-dependent participants exhibited elevated global brainβ-NTP (direct measure of adenosine triphosphate),α-NTP, and total NTP levels compared to those of healthy controls. Cocaine-dependent participants performed worse on the Continuous Performance Task and Digit Symbol Substitution Task at baseline compared to healthy control participants, but sleep deprivation did not worsen cognitive performance in either group. Enhancements of brain ATP levels in cocaine dependent participants following recovery sleep may reflect a greater impact of sleep deprivation on sleep homeostasis, which may highlight the importance of monitoring sleep during abstinence and the potential influence of sleep loss in drug relapse.


2021 ◽  
Author(s):  
Adrienne C. DeBrosse ◽  
Ye Li ◽  
Robyn Wiseman ◽  
Racine Ross ◽  
Sy’Keria Garrison ◽  
...  

AbstractSustained attention is a core cognitive domain that is often disrupted in neuropsychiatric disorders. Continuous performance tests (CPTs) are the most common clinical assay of sustained attention. In CPTs, participants produce a behavioral response to target stimuli and refrain from responding to non-target stimuli. Performance in CPTs is measured as the ability to discriminate between targets and non-targets. Rodent versions of CPTs (rCPT) have been developed and validated with both anatomical and pharmacological studies, providing a translational platform for understanding the neurobiology of sustained attention. In human studies, using degraded stimuli (decreased contrast) in CPTs impairs performance and patients with schizophrenia experience a larger decrease in performance compared to healthy controls. In this study, we tested multiple levels of stimulus degradation in a touchscreen version of the CPT in mice. We found that stimulus degradation significantly decreased performance in both males and females. The changes in performance consisted of a decrease in stimulus discrimination, measured as d’, and increases in hit reaction time and reaction time variability. These findings are in line with the effects of stimulus degradation in human studies. Overall, female mice demonstrated a more liberal response strategy than males, but response strategy was not affected by stimulus degradation. These data extend the utility of the mouse CPT by demonstrating that stimulus degradation produces equivalent behavioral responses in mice and humans. Therefore, the degraded stimuli rCPT has high translational value as a preclinical assay of sustained attention.


2015 ◽  
Vol 22 (14) ◽  
pp. 1344-1353 ◽  
Author(s):  
Rosemary Allen ◽  
Kristen Pammer

Objective: The purpose of this study was to investigate the impact of a concurrent “white noise” stimulus on selective attention in children with ADHD. Method: Participants were 33 children aged 7 to 14 years, who had been previously diagnosed with ADHD. All children completed a computer-based conjunction search task under two noise conditions: a classroom noise condition and a classroom noise + white noise condition. The white noise stimulus was sounds of rain, administered using an iPhone application called Sleep Machine. Results: There were no overall differences between conditions for target detection accuracy, mean reaction time (RT), or reaction time variability ( SD). The impact of white noise on visual search depended on children’s medication status. Conclusion: White noise may improve task engagement for non-medicated children. White noise may be beneficial for task performance when used as an adjunct to medication.


Sign in / Sign up

Export Citation Format

Share Document