scholarly journals High-Throughput Screening of RNA Polymerase Inhibitors Using a Fluorescent UTP Analog

2006 ◽  
Vol 11 (8) ◽  
pp. 968-976 ◽  
Author(s):  
Jyothi Bhat ◽  
Rajendra Rane ◽  
Suresh M. Solapure ◽  
Dhiman Sarkar ◽  
Umender Sharma ◽  
...  

RNA polymerase (RNAP) is a well-validated target for the development of antibacterial and antituberculosis agents. Because the purification of large quantities of native RNA polymerase from pathogenic mycobacteria is hazardous and cumbersome, the primary screening was carried out using Escherichia coli RNAP. The authors have developed a high-throughput screening (HTS) assay to screen for novel inhibitors of RNAP. In this assay, a fluorescent analog of UTP, gamma-amino naphthalene sulfonic acid (γ-AmNS) UTP, was used as one of the nucleotide substrates. Incorporation of UMP in RNA results in the release of γ-AmNS-PPi, which has higher intrinsic fluorescence than (γ-AmNS) UTP. The assay was optimized in a 384-well format and used to screen 670,000 compounds at a concentration of 10 μM. About 0.1% of the compounds showed more than 60% inhibition in the primary HTS. All the primary actives tested for dose response using the same assay had an EC50 below 100 μM. Eighty percent of the primary HTS actives obtained using E. coli RNAP showed comparable activity against Mycobacterium smegmatis RNAP in the conventional radioactive assay. Activity of hits selected for the hit-to-lead optimization was also confirmed against Mycobacterium bovis RNAP which has >99% sequence identity with Mycobacterium tuberculosis RNAP subunits.

2020 ◽  
Vol 17 (5) ◽  
pp. 716-724
Author(s):  
Yan A. Ivanenkov ◽  
Renat S. Yamidanov ◽  
Ilya A. Osterman ◽  
Petr V. Sergiev ◽  
Vladimir A. Aladinskiy ◽  
...  

Background: The key issue in the development of novel antimicrobials is a rapid expansion of new bacterial strains resistant to current antibiotics. Indeed, World Health Organization has reported that bacteria commonly causing infections in hospitals and in the community, e.g. E. Coli, K. pneumoniae and S. aureus, have high resistance vs the last generations of cephalosporins, carbapenems and fluoroquinolones. During the past decades, only few successful efforts to develop and launch new antibacterial medications have been performed. This study aims to identify new class of antibacterial agents using novel high-throughput screening technique. Methods: We have designed library containing 125K compounds not similar in structure (Tanimoto coeff.< 0.7) to that published previously as antibiotics. The HTS platform based on double reporter system pDualrep2 was used to distinguish between molecules able to block translational machinery or induce SOS-response in a model E. coli system. MICs for most active chemicals in LB and M9 medium were determined using broth microdilution assay. Results: In an attempt to discover novel classes of antibacterials, we performed HTS of a large-scale small molecule library using our unique screening platform. This approach permitted us to quickly and robustly evaluate a lot of compounds as well as to determine the mechanism of action in the case of compounds being either translational machinery inhibitors or DNA-damaging agents/replication blockers. HTS has resulted in several new structural classes of molecules exhibiting an attractive antibacterial activity. Herein, we report as promising antibacterials. Two most active compounds from this series showed MIC value of 1.2 (5) and 1.8 μg/mL (6) and good selectivity index. Compound 6 caused RFP induction and low SOS response. In vitro luciferase assay has revealed that it is able to slightly inhibit protein biosynthesis. Compound 5 was tested on several archival strains and exhibited slight activity against gram-negative bacteria and outstanding activity against S. aureus. The key structural requirements for antibacterial potency were also explored. We found, that the unsubstituted carboxylic group is crucial for antibacterial activity as well as the presence of bulky hydrophobic substituents at phenyl fragment. Conclusion: The obtained results provide a solid background for further characterization of the 5'- (carbonylamino)-2,3'-bithiophene-4'-carboxylate derivatives discussed herein as new class of antibacterials and their optimization campaign.


2016 ◽  
Vol 60 (10) ◽  
pp. 5995-6002 ◽  
Author(s):  
Kristin R. Baker ◽  
Bimal Jana ◽  
Henrik Franzyk ◽  
Luca Guardabassi

ABSTRACTThe envelope of Gram-negative bacteria constitutes an impenetrable barrier to numerous classes of antimicrobials. This intrinsic resistance, coupled with acquired multidrug resistance, has drastically limited the treatment options against Gram-negative pathogens. The aim of the present study was to develop and validate an assay for identifying compounds that increase envelope permeability, thereby conferring antimicrobial susceptibility by weakening of the cell envelope barrier in Gram-negative bacteria. A high-throughput whole-cell screening platform was developed to measureEscherichia colienvelope permeability to a β-galactosidase chromogenic substrate. The signal produced by cytoplasmic β-galactosidase-dependent cleavage of the chromogenic substrate was used to determine the degree of envelope permeabilization. The assay was optimized by using known envelope-permeabilizing compounds andE. coligene deletion mutants with impaired envelope integrity. As a proof of concept, a compound library comprising 36 peptides and 45 peptidomimetics was screened, leading to identification of two peptides that substantially increased envelope permeability. Compound 79 reduced significantly (from 8- to 125-fold) the MICs of erythromycin, fusidic acid, novobiocin and rifampin and displayed synergy (fractional inhibitory concentration index, <0.2) with these antibiotics by checkerboard assays in two genetically distinctE. colistrains, including the high-risk multidrug-resistant, CTX-M-15-producing sequence type 131 clone. Notably, in the presence of 0.25 μM of this peptide, both strains were susceptible to rifampin according to the resistance breakpoints (R> 0.5 μg/ml) for Gram-positive bacterial pathogens. The high-throughput screening platform developed in this study can be applied to accelerate the discovery of antimicrobial helper drug candidates and targets that enhance the delivery of existing antibiotics by impairing envelope integrity in Gram-negative bacteria.


2016 ◽  
pp. 108705711667999
Author(s):  
Nathan T. Scharf ◽  
Vadim Molodtsov ◽  
Arrin Kontos ◽  
Katsuhiko S. Murakami ◽  
George A. Garcia

2010 ◽  
Vol 15 (9) ◽  
pp. 1088-1098 ◽  
Author(s):  
Adam Shapiro ◽  
Haris Jahic ◽  
Swati Prasad ◽  
David Ehmann ◽  
Jason Thresher ◽  
...  

The degree of supercoiling of DNA is vital for cellular processes, such as replication and transcription. DNA topology is controlled by the action of DNA topoisomerase enzymes. Topoisomerases, because of their importance in cellular replication, are the targets of several anticancer and antibacterial drugs. In the search for new drugs targeting topoisomerases, a biochemical assay compatible with automated high-throughput screening (HTS) would be valuable. Gel electrophoresis is the standard method for measuring changes in the extent of supercoiling of plasmid DNA when acted upon by topoisomerases, but this is a low-throughput and laborious method. A medium-throughput method was described previously that quantitatively distinguishes relaxed and supercoiled plasmids by the difference in their abilities to form triplex structures with an immobilized oligonucleotide. In this article, the authors describe a homogeneous supercoiling assay based on triplex formation in which the oligonucleotide strand is labeled with a fluorescent dye and the readout is fluorescence anisotropy. The new assay requires no immobilization, filtration, or plate washing steps and is therefore well suited to HTS for inhibitors of topoisomerases. The utility of this assay is demonstrated with relaxation of supercoiled plasmid by Escherichia coli topoisomerase I, supercoiling of relaxed plasmid by E. coli DNA gyrase, and inhibition of gyrase by fluoroquinolones and nalidixic acid.


2010 ◽  
Vol 29 (8) ◽  
pp. 667-677 ◽  
Author(s):  
Edward J Calabrese ◽  
George R Hoffmann ◽  
Edward J Stanek ◽  
Marc A Nascarella

This article assesses the response below a toxicological threshold for 1888 antibacterial agents in Escherichia coli, using 11 concentrations with twofold concentration spacing in a high-throughput study. The data set had important strengths such as low variability in the control (2%—3% SD), a repeat measure of all wells, and a built-in replication. Bacterial growth at concentrations below the toxic threshold is significantly greater than that in the controls, consistent with a hormetic concentration response. These findings, along with analyses of published literature and complementary evaluations of concentration-response model predictions of low-concentration effects in yeast, indicate a lack of support for the broadly and historically accepted threshold model for responses to concentrations below the toxic threshold.


2013 ◽  
Vol 18 (9) ◽  
pp. 1027-1034 ◽  
Author(s):  
Auda A. Eltahla ◽  
Kurt Lackovic ◽  
Christopher Marquis ◽  
John-Sebastian Eden ◽  
Peter A. White

The hepatitis C virus (HCV) RNA-dependent RNA polymerase (RdRp) plays an essential role in the replication of HCV and is a key target for novel antiviral therapies. Several RdRp inhibitors are in clinical trials and have increased response rates when combined with current interferon-based therapies for genotype 1 (G1) HCV patients. These inhibitors, however, show poor efficacy against non-G1 genotypes, including G3a, which represents ~20% of HCV cases globally. Here, we used a commercially available fluorescent dye to characterize G3a HCV RdRp in vitro. RdRp activity was assessed via synthesis of double-stranded RNA from the single-stranded RNA poly(C) template. The assay was miniaturized to a 384-well microplate format and a pilot high-throughput screen was conducted using 10,208 “lead-like” compounds, randomly selected to identify inhibitors of HCV G3a RdRp. Of 150 compounds demonstrating greatest inhibition, 10 were confirmed using both fluorescent and radioactive assays. The top two inhibitors (HAC001 and HAC002) demonstrated specific activity, with an IC50 of 12.7 µM and 1.0 µM, respectively. In conclusion, we describe simple, fluorescent-based high-throughput screening (HTS) for the identification of inhibitors of de novo RdRp activity, using HCV G3a RdRp as the target. The HTS system could be used against any positive-sense RNA virus that cannot be cultured.


FEBS Open Bio ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 248-264 ◽  
Author(s):  
Preeti Yadav ◽  
R Ayana ◽  
Swati Garg ◽  
Ravi Jain ◽  
Raj Sah ◽  
...  

2013 ◽  
Vol 12 (1) ◽  
pp. 37 ◽  
Author(s):  
Hervé Nozach ◽  
Carole Fruchart-Gaillard ◽  
François Fenaille ◽  
Fabrice Beau ◽  
Oscar Henrique Pereira Ramos ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document