7,12-Dimethylbenz(a)anthracene-Induced Myelotoxicity Differs in Mice Selected for High or Low Acute Inflammatory Response

2014 ◽  
Vol 33 (2) ◽  
pp. 130-142 ◽  
Author(s):  
Iana Suly Santos Katz ◽  
Layra Lucy Albuquerque ◽  
Alessandra Paes Suppa ◽  
Débora Mathias de Siqueira ◽  
Cristiano Rossato ◽  
...  

Polycyclic aromatic hydrocarbons, such as 7,12-dimethylbenz(a)anthracene (DMBA), are environmental pollutants that exert multiple toxic and carcinogenic effects. Studies showed that these effects are mediated by activation of the aryl hydrocarbon receptor (AhR) and modulated by allelic variants of Ahr gene. Here, we investigated the effects of DMBA treatment in the inflammatory response and bone marrow (BM) hematopoietic function of maximal acute inflammatory response (AIRmax) and minimal acute inflammatory response (AIRmin) heterogeneous mouse lines selected for high and low acute inflammatory responsiveness, respectively. The phenotypic selection resulted in the segregation of the Ahrd and Ahrb1 alleles that confer low and high receptor ligand-binding affinity, respectively, in AIRmax and AIRmin mice. We observed a reduction in BM mature granulocyte population in AIRmin mice 24 hours after DMBA treatment while both blast and immature myeloid cells were increased. Proliferation and differentiation of BM myeloid cells in response to in vitro granulocyte-macrophage colony-stimulating factor stimulus were impaired in AIRmin-treated mice. These DMBA effects on myeloid BM cells (BMCs) affected the in vivo leukocyte migration to an inflammatory site induced by polyacrylamide beads (Biogel P-100, Bio-Rad, France) injection in AIRmin mice. On the other hand, these alterations were not observed in DMBA-treated AIRmax mice. These data indicate that DMBA affects myeloid cell differentiation and inflammatory response and Ahrb1 allele in the genetic background of AIRmin mice contributes to this effect.

2019 ◽  
Vol 93 (24) ◽  
Author(s):  
Nishank Bhalla ◽  
Christina L. Gardner ◽  
Sierra N. Downs ◽  
Matthew Dunn ◽  
Chengqun Sun ◽  
...  

ABSTRACT Alphavirus infection of fibroblastic cell types in vitro inhibits host cell translation and transcription, leading to suppression of interferon alpha/beta (IFN-α/β) production. However, the effect of infection upon myeloid cells, which are often the first cells encountered by alphaviruses in vivo, is unclear. Previous studies demonstrated an association of systemic IFN-α/β production with myeloid cell infection efficiency. Murine infection with wild-type Venezuelan equine encephalitis virus (VEEV), a highly myeloid-cell-tropic alphavirus, results in secretion of very high systemic levels of IFN-α/β, suggesting that stress responses in responding cells are active. Here, we infected myeloid cell cultures with VEEV to identify the cellular source of IFN-α/β, the timing and extent of translation and/or transcription inhibition in infected cells, and the transcription factors responsible for IFN-α/β induction. In contrast to fibroblast infection, myeloid cell cultures infected with VEEV secreted IFN-α/β that increased until cell death was observed. VEEV inhibited translation in most cells early after infection (<6 h postinfection [p.i.]), while transcription inhibition occurred later (>6 h p.i.). Furthermore, the interferon regulatory factor 7 (IRF7), but not IRF3, transcription factor was critical for IFN-α/β induction in vitro and in sera of mice. We identified a subset of infected Raw 264.7 myeloid cells that resisted VEEV-induced translation inhibition and secreted IFN-α/β despite virus infection. However, in the absence of IFN receptor signaling, the size of this cell population was diminished. These results indicate that IFN-α/β induction in vivo is IRF7 dependent and arises in part from a subset of myeloid cells that are resistant, in an IFN-α/β-dependent manner, to VEEV-induced macromolecular synthesis inhibition. IMPORTANCE Most previous research exploring the interaction of alphaviruses with host cell antiviral responses has been conducted using fibroblast lineage cell lines. Previous studies have led to the discovery of virus-mediated activities that antagonize host cell antiviral defense pathways, such as host cell translation and transcription inhibition and suppression of STAT1 signaling. However, their relevance and impact upon myeloid lineage cell types, which are key responders during the initial stages of alphavirus infection in vivo, have not been well studied. Here, we demonstrate the different abilities of myeloid cells to resist VEEV infection compared to nonmyeloid cell types and begin to elucidate the mechanisms by which host antiviral responses are upregulated in myeloid cells despite the actions of virus-encoded antagonists.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3226-3239 ◽  
Author(s):  
Ping Zhou ◽  
Liping Qian ◽  
Christine K. Bieszczad ◽  
Randolph Noelle ◽  
Michael Binder ◽  
...  

Abstract Mcl-1 is a member of the Bcl-2 family that is expressed in early monocyte differentiation and that can promote viability on transfection into immature myeloid cells. However, the effects of Mcl-1 are generally short lived compared with those of Bcl-2 and are not obvious in some transfectants. To further explore the effects of this gene, mice were produced that expressed Mcl-1 as a transgene in hematolymphoid tissues. The Mcl-1 transgene was found to cause moderate viability enhancement in a wide range of hematopoietic cell types, including lymphoid (B and T) as well as myeloid cells at both immature and mature stages of differentiation. However, enhanced hematopoietic capacity in transgenic bone marrow and spleen was not reflected in any change in pool sizes in the peripheral blood. In addition, among transgenic cells, mature T cells remained long lived compared with B cells and macrophages could live longer than either of these. Interestingly, when hematopoietic cells were maintained in tissue culture in the presence of interleukin-3, Mcl-1 enhanced the probability of outgrowth of continuously proliferating myeloid cell lines. Thus, Mcl-1 transgenic cells remained subject to normal in vivo homeostatic mechanisms controlling viable cell number, but these constraints could be overridden under specific conditions in vitro. Within the organism, Bcl-2 family members may act at “viability gates” along the differentiation continuum, functioning as part of a system for controlled hematopoietic cell amplification. Enforced expression of even a moderate viability-promoting member of this family such as Mcl-1, within a conducive intra- and extracellular environment in isolation from normal homeostatic constraints, can substantially increase the probability of cell immortalization. © 1998 by The American Society of Hematology.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 374-374 ◽  
Author(s):  
Zhong-fa Yang ◽  
Karen Drumea ◽  
Alan G. Rosmarin

Abstract GABP is an ets transcription factor that regulates genes that are required for innate immunity, including CD18 (β2 leukocyte integrin), lysozyme, and neutrophil elastase. GABP consists of two distinct and unrelated proteins. GABPα binds to DNA through its ets domain and recruits GABPβ, which contains the transactivation domain; together, they form a functional tetrameric transcription factor complex. We recently showed that GABP is required for entry into S phase of the cell cycle through its regulation of genes that are required for DNA synthesis and cyclin dependent kinase inhibitors (Yang, et al. Nature Cell Biol9:339, 2007). Furthermore, GABP is an essential component of a retinoic acid responsive myeloid enhanceosome (Resendes and Rosmarin Mol Cell Biol26:3060, 2006). We cloned Gabpa (the gene that encodes mouse Gabpα) from a mouse genomic BAC library and prepared a targeting vector in which the ets domain is flanked by loxP recombination sites (floxed allele). Deletion of both floxed Gabpa alleles causes an early embryonic lethal defect. In order to define the role of Gabpα in myelopoiesis, we bred floxed Gabpa mice to mice that bear the Mx1-Cre transgene, which drives expression of Cre recombinase in response to injection of the synthetic polynucleotide, poly I-C. Deletion of Gabpa dramatically reduced granulocytes and monocytes in the peripheral blood, spleen, and bone marrow, but myeloid cells recovered within weeks. In vitro colony forming assays indicated that myeloid cells in these mice were derived only from Gabpa replete myeloid precursors (that failed to delete both Gabpa alleles), suggesting strong pressure to retain Gabpα in vivo. We used a novel competitive bone marrow transplantation approach to determine if Gabp is required for myeloid cell development in vivo. Sub-lethally irradiated wild-type recipient mice bearing leukocyte marker CD45.1 received equal proportions of bone marrow from wild type CD45.1 donor mice and floxed-Mx1-Cre donor mice that bear CD45.2. Both the CD45.2 (floxed-Mx1-Cre) and CD45.1 (wild type) bone marrow engrafted well. Mice were then injected with pI-pC to induce Cre-mediated deletion of floxed Gabpa. The mature myeloid and T cell compartments were derived almost entirely from wild type CD45.1 cells. This indicates that the proliferation and/or differentiation of myeloid and T cell lineages requires Gabp. In contrast, B cell development was not impaired. We conclude that Gabpa disruption causes a striking loss of myeloid cells in vivo and corroborates prior in vitro data that GABP plays a crucial role in proliferation of myeloid progenitor cells.


Blood ◽  
1998 ◽  
Vol 92 (9) ◽  
pp. 3226-3239 ◽  
Author(s):  
Ping Zhou ◽  
Liping Qian ◽  
Christine K. Bieszczad ◽  
Randolph Noelle ◽  
Michael Binder ◽  
...  

Mcl-1 is a member of the Bcl-2 family that is expressed in early monocyte differentiation and that can promote viability on transfection into immature myeloid cells. However, the effects of Mcl-1 are generally short lived compared with those of Bcl-2 and are not obvious in some transfectants. To further explore the effects of this gene, mice were produced that expressed Mcl-1 as a transgene in hematolymphoid tissues. The Mcl-1 transgene was found to cause moderate viability enhancement in a wide range of hematopoietic cell types, including lymphoid (B and T) as well as myeloid cells at both immature and mature stages of differentiation. However, enhanced hematopoietic capacity in transgenic bone marrow and spleen was not reflected in any change in pool sizes in the peripheral blood. In addition, among transgenic cells, mature T cells remained long lived compared with B cells and macrophages could live longer than either of these. Interestingly, when hematopoietic cells were maintained in tissue culture in the presence of interleukin-3, Mcl-1 enhanced the probability of outgrowth of continuously proliferating myeloid cell lines. Thus, Mcl-1 transgenic cells remained subject to normal in vivo homeostatic mechanisms controlling viable cell number, but these constraints could be overridden under specific conditions in vitro. Within the organism, Bcl-2 family members may act at “viability gates” along the differentiation continuum, functioning as part of a system for controlled hematopoietic cell amplification. Enforced expression of even a moderate viability-promoting member of this family such as Mcl-1, within a conducive intra- and extracellular environment in isolation from normal homeostatic constraints, can substantially increase the probability of cell immortalization. © 1998 by The American Society of Hematology.


2015 ◽  
Vol 13 (12) ◽  
pp. 2031 ◽  
Author(s):  
SE Silva-Filho ◽  
FM De Souza Silva-Comar ◽  
LAM Wiirzler ◽  
RJ Do Pinho ◽  
R Grespan ◽  
...  

Blood ◽  
2003 ◽  
Vol 101 (8) ◽  
pp. 3249-3256 ◽  
Author(s):  
Anne E. R. Hicks ◽  
Sarah L. Nolan ◽  
Victoria C. Ridger ◽  
Paul G. Hellewell ◽  
Keith E. Norman

AbstractSelectin-dependent leukocyte rolling is one of the earliest steps of an acute inflammatory response and, as such, contributes to many inflammatory diseases. Although inhibiting leukocyte rolling with selectin antagonists is a strategy that promises far-reaching clinical benefit, the perceived value of this strategy has been limited by studies using inactive, weak, or poorly characterized antagonists. Recombinant P-selectin glycoprotein ligand–1–immunoglobulin (rPSGL-Ig) is a recombinant form of the best-characterized selectin ligand (PSGL-1) fused to IgG, and is one of the best prospects in the search for effective selectin antagonists. We have used intravital microscopy to investigate the ability of rPSGL-Ig to influence leukocyte rolling in living blood vessels and find that it can reduce rolling dependent on each of the selectins in vivo. Interestingly, doses of rPSGL-Ig required to reverse pre-existing leukocyte rolling are 30-fold higher than those required to limit inflammation, suggesting additional properties of this molecule. In support of this, we find that rPSGL-Ig can bind the murine chemokine KC and inhibit neutrophil migration toward this chemoattractant in vitro.


2018 ◽  
Vol 115 (10) ◽  
pp. E2366-E2375 ◽  
Author(s):  
David Langlais ◽  
Regina Cencic ◽  
Neda Moradin ◽  
James M. Kennedy ◽  
Kodjo Ayi ◽  
...  

Cerebral malaria (CM) is a severe and rapidly progressing complication of infection by Plasmodium parasites that is associated with high rates of mortality and morbidity. Treatment options are currently few, and intervention with artemisinin (Art) has limited efficacy, a problem that is compounded by the emergence of resistance to Art in Plasmodium parasites. Rocaglates are a class of natural products derived from plants of the Aglaia genus that have been shown to interfere with eukaryotic initiation factor 4A (eIF4A), ultimately blocking initiation of protein synthesis. Here, we show that the rocaglate CR-1-31B perturbs association of Plasmodium falciparum eIF4A (PfeIF4A) with RNA. CR-1-31B shows potent prophylactic and therapeutic antiplasmodial activity in vivo in mouse models of infection with Plasmodium berghei (CM) and Plasmodium chabaudi (blood-stage malaria), and can also block replication of different clinical isolates of P. falciparum in human erythrocytes infected ex vivo, including drug-resistant P. falciparum isolates. In vivo, a single dosing of CR-1-31B in P. berghei-infected animals is sufficient to provide protection against lethality. CR-1-31B is shown to dampen expression of the early proinflammatory response in myeloid cells in vitro and dampens the inflammatory response in vivo in P. berghei-infected mice. The dual activity of CR-1-31B as an antiplasmodial and as an inhibitor of the inflammatory response in myeloid cells should prove extremely valuable for therapeutic intervention in human cases of CM.


1999 ◽  
Vol 19 (4) ◽  
pp. 3051-3061 ◽  
Author(s):  
Wei-Fang Shen ◽  
Sophia Rozenfeld ◽  
Angela Kwong ◽  
Laszlo G. Kömüves ◽  
H. Jeffrey Lawrence ◽  
...  

ABSTRACT Aberrant activation of the HOX, MEIS, and PBX homeodomain protein families is associated with leukemias, and retrovirally driven coexpression of HOXA9 and MEIS1 is sufficient to induce myeloid leukemia in mice. Previous studies have demonstrated that HOX-9 and HOX-10 paralog proteins are unique among HOX homeodomain proteins in their capacity to form in vitro cooperative DNA binding complexes with either the PBX or MEIS protein. Furthermore, PBX and MEIS proteins have been shown to form in vivo heterodimeric DNA binding complexes with each other. We now show that in vitro DNA site selection for MEIS1 in the presence of HOXA9 and PBX yields a consensus PBX-HOXA9 site. MEIS1 enhances in vitro HOXA9-PBX protein complex formation in the absence of DNA and forms a trimeric electrophoretic mobility shift assay (EMSA) complex with these proteins on an oligonucleotide containing a PBX-HOXA9 site. Myeloid cell nuclear extracts produce EMSA complexes which appear to contain HOXA9, PBX2, and MEIS1, while immunoprecipitation of HOXA9 from these extracts results in coprecipitation of PBX2 and MEIS1. In myeloid cells, HOXA9, MEIS1, and PBX2 are all strongly expressed in the nucleus, where a portion of their signals are colocalized within nuclear speckles. However, cotransfection of HOXA9 and PBX2 with or without MEIS1 minimally influences transcription of a reporter gene containing multiple PBX-HOXA9 binding sites. Taken together, these data suggest that in myeloid leukemia cells MEIS1 forms trimeric complexes with PBX and HOXA9, which in turn can bind to consensus PBX-HOXA9 DNA targets.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2320-2320
Author(s):  
Parth Shah ◽  
Mohamed Eltanbouly ◽  
Nicole Smits ◽  
Aurelien Sarde ◽  
Randolph Noelle ◽  
...  

Background:V-domain Ig suppressor of T cell activation (VISTA) is an immune checkpoint receptor with an established role as an inhibitory receptor on T cells. However, its role in myeloid cell biology remains unclear. Owing to the much higher expression of VISTA on monocytes and macrophages, we investigated its role in regulating myeloid biology. Methods: Mouse bone marrow-derived macrophages (BMDMs) were differentiated and treated with agonistic anti-VISTA mAb under steady-state and conditions of M1 inflammatory polarization (LPS + IFN-𝛾). Human CD14+ monocytes were isolated from peripheral blood and treated with anti-VISTA in vitro. Phosphoarrays were used to assess signaling downstream of VISTA engagement and Luminex analysis was used to evaluate cytokine production. Time-course total RNA-seq was performed on BMDMs (at 1, 2, 4, 8 and 16 hours of anti-VISTA treatment). To evaluate the effect of anti-VISTA in vivo, single-cell RNA-seq (scRNA-seq) was performed on FACS sorted CD11b+ myeloid populations 12 hours after mice were treated with intravenous anti-VISTA. Results: Anti-VISTA treatment of BMDMs and human monocytes in vitro induced rapid phosphorylation events including robust phosphorylation of Raf-1 kinase at the suppressive serine residue 43.Next, we generated a comprehensive timestamp of VISTA activation in BMDMs in vitro by time-course deep RNA-seq analysis of agonistic anti-VISTA treated cells under rigorous M1 inflammatory polarization. This revealed a unique activation state marked by the upregulation of inhibitory cytokines IL-10 and IL1RA as well as ablation of IL-12 family cytokines, suggestive of an M2-like signature. The presence of an M2-like immunoregulatory signature defined by upregulation of the IL-10 was also seen in macrophages identified post clustering of in vivo scRNA-seq data on myeloid cells. Conclusion: Using novel agonistic anti-VISTA antibodies, we reveal that VISTA triggering on myeloid cells can induce an alternative anti-inflammatory cell-state, even under conditions of strong inflammatory polarization. This introduces VISTA as an intrinsic checkpoint of macrophage tolerance. Disclosures Noelle: Immunext: Employment, Equity Ownership, Patents & Royalties, Research Funding.


2019 ◽  
Author(s):  
Eraj Shafiq Khokhar ◽  
Sneha Borikar ◽  
Elizabeth Eudy ◽  
Tim Stearns ◽  
Kira Young ◽  
...  

SummaryAged hematopoietic stem cells (HSCs) undergo biased lineage priming and differentiation toward production of myeloid cells. A comprehensive understanding of gene regulatory mechanisms causing HSC aging is needed to devise new strategies to sustainably improve immune function in aged individuals. Here, a focused shRNA screen of epigenetic factors reveals that the histone acetyltransferase Kat6b regulates myeloid cell production from hematopoietic progenitor cells. Within the stem and progenitor cell compartment, Kat6b is most highly expressed in long-term (LT)-HSCs and is significantly decreased with aging at the transcript and protein levels. Knockdown of Kat6b in young LT-HSCs causes skewed production of myeloid cells both in vitro and in vivo. Transcriptome analysis identifies enrichment of aging and macrophage-associated gene signatures alongside reduced expression of self-renewal and multilineage priming signatures. Together, our work identifies KAT6B as an epigenetic regulator of LT-HSC aging and a novel target to improve aged immune function.


Sign in / Sign up

Export Citation Format

Share Document