scholarly journals Safety Evaluation of Soy Leghemoglobin Protein Preparation Derived From Pichia pastoris, Intended for Use as a Flavor Catalyst in Plant-Based Meat

2018 ◽  
Vol 37 (3) ◽  
pp. 241-262 ◽  
Author(s):  
Rachel Z. Fraser ◽  
Mithila Shitut ◽  
Puja Agrawal ◽  
Odete Mendes ◽  
Sue Klapholz

The leghemoglobin protein (LegH) from soy ( Glycine max) expressed in Pichia pastoris (LegH preparation, LegH Prep) imparts a meat-like flavor profile onto plant-based food products. The safety of LegH Prep was evaluated through a series of in vitro and in vivo tests. The genotoxic potential of LegH Prep was assessed using the bacterial reverse mutation assay (Ames test) and the in vitro chromosome aberration test. LegH Prep was nonmutagenic and nonclastogenic in each test, respectively. Systemic toxicity was assessed in a 28-day dietary study in male and female Sprague Dawley rats. There were no mortalities associated with the administration of LegH Prep. There were no clinical observations, body weight, ophthalmological, clinical pathology, or histopathological changes attributable to LegH Prep administration. There were no observed effects on male reproduction in this study, but the suggestion of a potential estrous cycle distribution effect in female rats prompted a second comprehensive 28-day dietary study in female Sprague Dawley rats. This study demonstrated that female reproductive parameters were comparable between rats treated with LegH Prep and concurrent control rats. These studies establish a no observed adverse effect level of 750 mg/kg/d LegH, which is over 100 times greater than the 90th percentile estimated daily intake. Collectively, the results of the studies presented raise no issues of toxicological concern with regard to LegH Prep under the conditions tested.

2017 ◽  
Author(s):  
Rachel Z. Fraser ◽  
Mithila Shitut ◽  
Puja Agrawal ◽  
Odete Mendes ◽  
Sue Klapholz

The leghemoglobin protein (LegH) from soy (Glycine max) expressed in Pichia pastoris (LegH Prep) imparts a meat-like flavor profile onto plant-based food products. The safety of LegH Prep was evaluated through a series of in vitro and in vivo tests. The genotoxic potential of LegH Prep was assessed using the bacterial reverse mutation assay (Ames test) and the in vitro chromosome aberration test. LegH Prep was non-mutagenic and non-clastogenic in each test, respectively. Systemic and female reproductive toxicity were assessed in two separate 28-day dietary studies in Sprague Dawley rats. There were no mortalities associated with the administration of LegH Prep. There were no clinical observations, body weight, ophthalmological, clinical pathology, or histopathological changes attributable to LegH Prep administration. Female reproductive parameters were comparable between rats treated with LegH Prep and concurrent control rats. These studies establish an NOAEL of 750 mg/kg/day LegH, which is over 100 times greater than the 90th percentile estimated daily intake (EDI). Collectively, this work demonstrates that LegH Prep is safe for its intended use in ground beef analogue products at concentrations up to 0.8% LegH.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Himanshu Kushwah ◽  
Nidhi Sandal ◽  
Meenakshi Chauhan ◽  
Gaurav Mittal

Abstract Background Uncontrolled bleeding is one of the primary reasons for preventable death in both civilian trauma and military battle field. This study evaluates in vitro and in vivo hemostatic potential of four biopolymeric natural gums, namely, gum tragacanth, guar gum, xanthan gum, and gum acacia. In vitro evaluation of whole blood clotting time and erythrocyte agglutination assay were carried out. In vitro cytotoxicity studies with respect to each gum were done in human lymphocytes to ascertain percent cell viability. In vivo hemostatic potential of each gum (as sponge dressing and powder form) was evaluated in Sprague Dawley rats using tail bleeding assay and compared with commercially available hemostatic sponge. Other important parameters like (a) time taken for complete hemostasis, (b) amount of blood absorbed, (c) adherence strength of developed hemostatic dressing(s), (d) incidence of re-bleeding, and (e) survival of animals were also studied. Results Of the four test gums studied, xanthan gum (@3mg/ml of blood) and gum tragacanth (@35mg/ml of blood) were able to clot blood in least time (58.75±6.408 s and 59.00±2.082 s, respectively) and exhibited very good hemostatic potential in vitro. Except for xanthan gum, all other test gums did not exhibit any significant cytotoxicity at different time points till 24 h. In rat tail bleeding experiments, gum tragacanth sponge dressing and powder achieved hemostasis in least time (156.2±12.86 s and 76±12.55 s, respectively) and much earlier than commercially available product (333.3±38.84 s; p˂0.01). Conclusion Results indicate potential of gum tragacanth to be developed into a suitable hemostatic product.


1991 ◽  
Vol 7 (3) ◽  
pp. 125-139 ◽  
Author(s):  
David R. Bevan ◽  
David M. Ruggio

To evaluate health risks associated with exposure to particulates in the environment, it is necessary to quantify the bioavailability of carcinogens associated with the particulates. Direct analysis of bioavailability in vivo is most readily accomplished by adsorbing a radiolabeled form of the carcinogen to the particulate. A sam ple of native diesel particulate collected from an Oldsmobile die sel engine that contained 1.03 μ g benzo[ a] pyrene ( BaP)/ g particulate was supplemented with exogenous [ 3 H]- BaP to pro duce a particulate containing 2.62 μ g BaP/g. To insure that elu tion of BaP from native and [3 H] -BaP-supplemented particulate was similar, in vitro analyses were performed. When using phos pholipid vesicles composed of dimyristoylphosphatidylcholine (DMPC), 1.52% of total BaP was eluted from native particulate into the vesicles in 18 hrs; from [ 3 H] -BaP supplemented particu late, 1.68% was eluted. Using toluene as eluent, 2.55% was eluted from native particulate, and 8.25% from supplemented particulate, in 6 hrs. Supplemented particulate was then instilled intratracheally into male Sprague-Dawley rats and distribution of radioactivity was analyzed at selected times over 3 days. About 50% of radioactivity remained in lungs at 3 days following instil lation, with 30% being excreted into feces and the remainder dis tributed throughout the organs of the rats. To estimate the amount of radioactivity that entered feces through swallowing of a portion of the instilled dose, [3 H] -BaP-supplemented particu late was instilled intratracheally into rats that had a cannula sur gically implanted in the bile duct. Rate of elimination of radio activity into bile was monitored; 10.6% of radioactivity was re covered in 6 hr, an amount slightly lower than the 12.8% ex creted in 6 hrs into feces of animals with intact bile ducts. Our studies provide a quantitative description of the distribution of BaP and its metabolites following intratracheal instillation of diesel particulate. Because rates of elution of BaP in vitro are similar for native diesel particulate and particulate with supple mental [ 3H] -BaP, our results provide a reasonable estimate of the bioavailability in vivo of BaP associated with diesel particu late.


1996 ◽  
Vol 17 (3) ◽  
pp. 451-457 ◽  
Author(s):  
Barbara A. Hill ◽  
Paul C. Brown ◽  
Karl-Heinz Preisegger ◽  
Jeffrey A. Silverman

1979 ◽  
Vol 81 (2) ◽  
pp. 183-198 ◽  
Author(s):  
ANNE-MARIE SCOTT ◽  
SUSAN MURPHY ◽  
R. A. HAWKINS

Dimethylbenz(a)anthracene (DMBA)-induced and transplanted rat mammary tumours (2 lines) were examined for oestrogen receptor activity, and for sensitivity to hormones in vivo (by ovariectomy) and in vitro (by tissue culture). In vivo, the growth of all tumours induced by the administration of DMBA in random-bred Sprague–Dawley rats was found to be dependent on the ovary, whilst in all transplanted tumours (12 TG-3 and six TG-5 lines), maintained in an inbred strain of Sprague–Dawley rats, growth was found to be independent of the ovary. In vitro, the capacity for DNA synthesis in DMBA-induced tumours was better maintained after 24 h when insulin (10 μg/ml) and corticosterone (5 μg/ml) or insulin, corticosterone and prolactin (each 5 μg/ml) were present in the medium (five out of 12 and eight out of 11 tumours respectively); no effect of hormones in the media was detected after 48 h. In the transplanted tumours, no effect of hormones on DNA synthesis was detected after either 24 or 48 h of culture. Synthesis of lecithin was not detectably influenced by the presence of hormones in either DMBA-induced or transplanted tumours. Oestrogen receptor concentrations were, on average, significantly higher in the DMBA-induced tumours than in either line of transplanted tumour. For 22 DMBA-induced tumours and 15 transplanted tumours, the effect of hormones in vitro (`response') was directly correlated with receptor concentration at time 0 (Spearman's ρ = + 0·59) and inversely correlated with the rate of DNA synthesis (`basal') at time 0 (Spearman's ρ = −0·62). No single parameter or pair of parameters permitted accurate distinction between the tumour types.


2018 ◽  
Vol 49 (4) ◽  
pp. 1420-1430 ◽  
Author(s):  
Lixiong He ◽  
Yujing Huang ◽  
Qiaonan Guo ◽  
Hui Zeng ◽  
Chuanfen Zheng ◽  
...  

Background/Aims: Our recent study indicated that the serum microcystin-LR (MC-LR) level is positively linked to the risk of human hepatocellular carcinoma (HCC). Gankyrin is over-expressed in cancers and mediates oncogenesis; however, whether MC-LR induces tumor formation and the role of gankyrin in this process is unclear. Methods: We induced malignant transformation of L02 liver cells via 35 passages with exposure to 1, 10, or 100 nM MC-LR. Wound healing, plate and soft agar colony counts, and nude mice tumor formation were used to evaluate the tumorigenic phenotype of MC-LR-treated cells. Silencing gankyrin was used to confirm its function. We established a 35-week MC-LR exposure rat model by twice weekly intraperitoneal injection with 10 μg/kg body weight. In addition, 96 HCC patients were tested for tumor tissue gankyrin expression and serum MC-LR levels. Results: Chronic low-dose MC-LR exposure increased proliferation, mobility, clone and tumor formation abilities of L02 cells as a result of gankyrin activation, while silencing gankyrin inhibited the carcinogenic phenotype of MC-LR-treated cells. MC-LR also induced neoplastic liver lesions in Sprague-Dawley rats due to up-regulated gankyrin. Furthermore, a trend of increased gankyrin was observed in humans exposed to MC-LR. Conclusion: These results suggest that MC-LR induces hepatocarcinogenesis in vitro and in vivo by increasing gankyrin levels, providing new insight into MC-LR carcinogenicity studies.


2020 ◽  
Vol 318 (2) ◽  
pp. R418-R427 ◽  
Author(s):  
Reham H. Soliman ◽  
Jermaine G. Johnston ◽  
Eman Y. Gohar ◽  
Crystal M. Taylor ◽  
David M. Pollock

Genes for the epithelial sodium channel (ENaC) subunits are expressed in a circadian manner, but whether this results in time-of-day differences in activity is not known. Recent data show that protein expression of ENaC subunits is higher in kidneys from female rats, yet females are more efficient in excreting an acute salt load. Thus, our in vivo study determined whether there is a time-of-day difference as well as a sex difference in the response to ENaC inhibition by benzamil. Our results showed that the natriuretic and diuretic responses to a single dose of benzamil were significantly greater in male compared with female rats whether given at the beginning of the inactive period [Zeitgeber time 0 (ZT0), 7 AM] or active period (ZT12, 7 PM). However, the response to benzamil was not significantly different between ZT0 and ZT12 dosing in either male or female rats. There was no difference in renal cortical α-ENaC protein abundance between ZT0 and ZT12 or males and females. Given previous reports of flow-induced stimulation of endothelin-1 (ET-1) production and sex differences in the renal endothelin system, we measured urinary ET-1 excretion to assess the effects of increased urine flow on intrarenal ET-1. ET-1 excretion was significantly increased following benzamil administration in both sexes, but this increase was significantly greater in females. These results support the hypothesis that ENaC activity is less prominent in maintaining Na+ balance in females independent of renal ET-1. Because ENaC subunit genes and protein expression vary by time of day and are greater in female rat kidneys, this suggests a clear disconnect between ENaC expression and channel activity.


1994 ◽  
Vol 267 (2) ◽  
pp. R502-R507 ◽  
Author(s):  
H. Sidransky ◽  
E. Verney

Since Lewis rats are susceptible to many inflammatory diseases and have been used in an experimental model of the eosinophilia-myalgia syndrome, we investigated whether Lewis rats would respond to L-tryptophan as have Sprague-Dawley rats reported earlier. In this comparative study using females of both strains, we observed a decrease in the affinity of in vitro L-tryptophan binding to hepatic nuclei and nuclear envelopes of Lewis rats compared with Sprague-Dawley rats. However, in vivo stimulatory effects of administering L-tryptophan on hepatic polyribosomal aggregation, protein synthesis, and nuclear RNA release were similar in both strains. In vitro [3H]tryptophan binding to hepatic nuclear envelopes, using L-tryptophan implicated in cases of the eosinophilia-myalgia syndrome, revealed less specific binding than when using nonimplicated L-tryptophan in both strains. The possible significance of the quantitative difference in the binding affinity of L-tryptophan to hepatic nuclei of Lewis rats compared with those of Sprague-Dawley rats is as yet undetermined.


2007 ◽  
Vol 293 (1) ◽  
pp. F212-F218 ◽  
Author(s):  
Hetal S. Kocinsky ◽  
Diane W. Dynia ◽  
Tong Wang ◽  
Peter S. Aronson

Direct phosphorylation of sodium hydrogen exchanger type 3 (NHE3) is a well-established physiological phenomenon; however, the exact role of NHE3 phosphorylation in its regulation remains unclear. The objective of this study was to evaluate whether NHE3 phosphorylation at serines 552 and 605 is physiologically regulated in vivo and, if so, whether changes in phosphorylation at these sites are tightly coupled to changes in transport activity. To this end, we directly compared PKA-induced NHE3 inhibition with site-specific changes in NHE3 phosphorylation in vivo and in vitro. In vivo, PKA was activated using an intravenous infusion of parathyroid hormone in Sprague-Dawley rats. In vitro, PKA was activated directly in opossum kidney (OKP) cells using forskolin and IBMX. NHE3 activity was assayed in microvillar membrane vesicles in the rat model and by 22Na uptake in the OKP cell model. In both cases, NHE3 phosphorylation at serines 552 and 605 was determined using previously characterized monoclonal phosphospecific antibodies directed to these sites. In vivo, we found dramatic changes in NHE3 phosphorylation at serines 552 and 605 with PKA activation but no corresponding alteration in NHE3 activity. This dissociation between NHE3 phosphorylation and activity was further verified in OKP cells in which phosphorylation clearly preceded transport inhibition. We conclude that although phosphorylation of NHE3 at serines 552 and 605 is regulated by PKA both in vivo and in vitro, phosphorylation of these sites does not directly alter Na+/H+ exchange activity.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Susan D’Souza ◽  
Jabar A. Faraj ◽  
Stefano Giovagnoli ◽  
Patrick P. DeLuca

The aim of this study was to design and evaluate biodegradable PLGA microspheres for sustained delivery of Risperidone, with an eventual goal of avoiding combination therapy for the treatment of schizophrenia. Two PLGA copolymers (50 : 50 and 75 : 25) were used to prepare four microsphere formulations of Risperidone. The microspheres were characterized by several in vitro techniques. In vivo studies in male Sprague-Dawley rats at 20 and 40 mg/kg doses revealed that all formulations exhibited an initial burst followed by sustained release of the active moiety. Additionally, formulations prepared with 50 : 50 PLGA had a shorter duration of action and lower cumulative AUC levels than the 75 : 25 PLGA microspheres. A simulation of multiple dosing at weekly or 15-day regimen revealed pulsatile behavior for all formulations with steady state being achieved by the second dose. Overall, the clinical use of Formulations A, B, C, or D will eliminate the need for combination oral therapy and reduce time to achieve steady state, with a smaller washout period upon cessation of therapy. Results of this study prove the suitability of using PLGA copolymers of varying composition and molecular weight to develop sustained release formulations that can tailor in vivo behavior and enhance pharmacological effectiveness of the drug.


Sign in / Sign up

Export Citation Format

Share Document