Modeling and experimental analysis of polypropylene honeycomb multi-layer sandwich composites under four-point bending

2016 ◽  
Vol 20 (4) ◽  
pp. 493-511 ◽  
Author(s):  
Jamal Arbaoui ◽  
Hassane Moustabchir ◽  
Catalin I Pruncu ◽  
Yves Schmitt

The behavior of a simple and innovative multi-layer sandwich panels having a polypropylene honeycomb core has been investigated carefully, theoretically and experimentally. A four-point bending test was performed to detect the mechanical characteristics of the multi-layer core. The experimental results emphasize a better rigidity of the multi-layer structure compared to the weakness displayed by the single-layer configuration. In fact, a small increase in the final weight of the component leads to a significant increase of the mechanical properties. In the second part of this study, analytical and numerical homogenization approaches were developed to compute the effective properties of the single polypropylene honeycomb core. The numerical model complies with the experimental protocol, and the simulation conducted is aiming to reproduce a typical four-point bending test on a polypropylene honeycomb multi-layer sandwich panel. Both numerical and experimental results are presented in details and a good correlation between them is highlighted.

Fibers ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 87 ◽  
Author(s):  
Hiep Le Chi ◽  
Petr Louda ◽  
Aravin Periyasamy ◽  
Totka Bakalova ◽  
Vladimir Kovacic

Textile-reinforced Portland cement-based concrete has been researched and developed over the last few decades. It was widely used in a different range of applications, such as repair and/or strengthening of structural elements, thin walls, lightweight structures, façade elements, and others. Due to its varied application, this study aims to develop the carbon textile-reinforced geopolymer composite. Specimens of rectangular form with the dimensions of 400 × 100 × 15 mm3, reinforced with carbon textile, were produced. Four-point bending test was used to evaluate the effect of carbon textile on the mechanical strength of reinforced geopolymer composite based on the three factors: the different mortar compositions corresponding to the addition of the chopped basalt fiber (BF), the number of carbon textile layers, and the different thicknesses of the mortar cover layer. Besides that, a small part of the pull-out test was also considered to assess the adhesion strength at the interface between carbon textile and geopolymer mortar. The experimental results from the four-point bending test showed that the mechanical strength of composite specimens increased when the content of the chopped basalt fiber increased. With the increasing number of the textile layers, the specimens improved the flexural strength significantly. However, the flexural toughness of the specimens reinforced with three textile layers did not improve, as compared to those reinforced with two textile layers. The experimental results for the specimens related to the mortar cover thicknesses indicated that specimens with the mortar cover thickness of 2 mm provide the best strength. The experimental results from the pull-out tests showed that all the specimens have the same failure mode by slipping of the fiber yarn from the matrix.


2021 ◽  
Vol 1144 (1) ◽  
pp. 012039
Author(s):  
M A Iman ◽  
N Mohamad ◽  
A A A Samad ◽  
Steafenie George ◽  
M A Tambichik ◽  
...  

2021 ◽  
pp. 152808372199377
Author(s):  
Jalil Hajrasouliha ◽  
Mohammad Sheikhzadeh

In the interest of reducing the weight and also cost of blade skins, various automatic preform manufacturing processes were developed including tape laying, filament winding and braiding. Among them, the circular braiding process was found to be an efficient method in producing seamless preforms on mandrels with various geometries. In this regard, an attempt was made to produce a carbon fiber reinforced composite with the shape of NACA 23018 airfoil using a circular braiding machine. Thus, suitable wooden mandrels were manufactured using NACA 23018 airfoil coordinates, which were obtained by assuming the perimeter of 20 cm. Furthermore, both biaxially and triaxially braided preforms were produced and subsequently impregnated with epoxy resin through an appropriate fabrication method. To assess their performance, four-point bending test was carried out on samples. Ultimately, the elastic response of braided composite airfoils was predicted using a meso-scale finite element modeling and was validated with experimental results.


2012 ◽  
Vol 184-185 ◽  
pp. 1163-1166
Author(s):  
Xi An Xie ◽  
Gao Feng Quan

Through the four-point bending test of lath-shaped heat treated AZ31 magnesium alloy, the bending properties and damage characteristics were explored. The results show that the optimal bending strength of the magnesium alloy were 355.1MPa and 259.2MPa for extruded and cast samples, respectively, after corresponding heat treatment with 350°C, 90min and 400°C, 30min. The initial cracks both occurred at the loading point after applied load exceeded the yield limit of AZ31 magnesium alloy. Surface bump, cracks and other damage morphology accompanied by a large number of twinning organizations were found on the surface of the samples.


2016 ◽  
Vol 57 (3) ◽  
pp. 335-343 ◽  
Author(s):  
Xiaolong Dong ◽  
Hongwei Zhao ◽  
Lin Zhang ◽  
Hongbing Cheng ◽  
Jing Gao

2015 ◽  
Vol 64 (4) ◽  
pp. 323-329 ◽  
Author(s):  
Hidetoshi KOBAYASHI ◽  
Noboru KONDA ◽  
Joy-A-Ka SUTEP ◽  
Ketaro HORIKAWA ◽  
Takeshi YAMAUCHI

Sign in / Sign up

Export Citation Format

Share Document