Buckling Analysis of FGM Thick Beam under Different Boundary Conditions Using GDQM

2012 ◽  
Vol 433-440 ◽  
pp. 4920-4924 ◽  
Author(s):  
Fatemeh Farhatnia ◽  
Mohammad Ali Bagheri ◽  
Amin Ghobadi

In this paper, buckling analysis of functionally graded (FG) thick beam under different conditions is presented. Based on the first order shear deformation theory, governing equations are obtained for Thimoshenko beam which is subjected to mechanical loads. In functionally graded materials (FGMs) the material properties obeying a simple power law is assumed to vary through thickness. In order to solve the buckling differential equations, Generalized Differential Quadrature Method (GDQM) is employed and thus a set of eigenvalue equations resulted. For solving this eigenvalue problem, a computer program was developed in a way that the influence of different parameters such as height to length ratio, various volume fraction functions and boundary conditions were included. Non-dimensional critical stress was calculated for simply-simply, clamped-simply and clamped-clamped supported beams. The results of GDQ method were compared with reported results from solving the Finite element too. The comparison showed the accuracy of obtained results clearly in this work.

2017 ◽  
Vol 29 (5) ◽  
pp. 741-763 ◽  
Author(s):  
Ali Kiani ◽  
Moslem Sheikhkhoshkar ◽  
Ali Jamalpoor ◽  
Mostafa Khanzadi

In the present article, according to the nonlocal elasticity theory within the framework of the third-order shear deformable plate assumption, the theoretical analysis of thermomechanical vibration response of magneto-electro-thermo-elastic nanoplate made of functionally graded materials resting on the visco-Pasternak medium is carried out. The simply supported magneto-electro-thermo-elastic nanoplate is supposed to subject to initial external electric, magnetic potentials, and temperature environment. The material characteristics of magneto-electro-thermo-elastic nanoplate are assumed to be variable continuously across the thickness direction based upon power law distribution. Hamilton’s principle is utilized to achieve the partial differential equations and corresponding boundary conditions. The equilibrium equations are solved analytically to determine the complex eigenfrequency using Navier’s approach which satisfies the simply supported boundary conditions. Numerical studies are performed to illustrate the dependency of the natural frequency of the system on the damping coefficient of the visco-Pasternak medium, nonlocal parameter, aspect ratio, temperature change, volume fraction index of functionally graded material, initial external electric voltage, initial external magnetic potential, and plate thickness. It is clearly indicated that these factors have highly significant impacts on the dynamic behavior of the proposed system.


2018 ◽  
Vol 29 (11) ◽  
pp. 2344-2361 ◽  
Author(s):  
Mohammad Hassan Shojaeefard ◽  
Hamed Saeidi Googarchin ◽  
Mohammad Mahinzare ◽  
Morteza Adibi

This article investigates free vibration of a functionally graded piezomagnetic material cylindrical nanoshell embedded in viscoelastic media under rotational, external electric and magnetic loadings. The governing equations of the nanoshell are derived based on Eringen’s nonlocal theory. It is found that, magnetic and piezoelectric properties of the structure change exponentially along the thickness. The rotational loading is calculated considering initial hoop tension. The results are obtained by applying generalized differential quadrature method to the governing equations and associated boundary conditions. Results also include those achieved for clamped-clamped and simply hinged-hinged boundary conditions. It is found that free vibration characteristics of functionally graded piezomagnetic material cylindrical nanoshell are influenced by several factors including angular velocity, length scale parameter, external voltage, external amperage, functionally graded power index, and viscoelastic media parameters.


2019 ◽  
Vol 11 (06) ◽  
pp. 1950052 ◽  
Author(s):  
Ali Ghorbanpour Arani ◽  
Farhad Kiani ◽  
Hassan Afshari

This paper presents a parametric study on aeroelastic stability analysis of multi-layered functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical panels subjected to a yawed supersonic flow. The panel is considered to be composed of different layers reinforced by carbon nanotubes arranged in different directions with various patterns and different volume fractions. Reddy’s third-order shear deformation theory (TSDT) is employed to model the structure and external pressure is estimated based on the linear supersonic piston theory. The set of governing equations and boundary conditions are derived using Hamilton’s principle and are solved numerically using generalized differential quadrature method (GDQM). Convergence and accuracy of the presented solution are confirmed and effect of volume fraction, distributions and orientation of carbon nanotubes (CNTs), yaw angle and geometrical parameters of the panel on the flutter boundaries are investigated. Results of this paper can be considered as a useful tool in design and analysis of supersonic airplanes and missiles.


2019 ◽  
Vol 11 (10) ◽  
pp. 1950099 ◽  
Author(s):  
Ye Tang ◽  
Shun Zhong ◽  
Tianzhi Yang ◽  
Qian Ding

The buckling and free vibration of a Euler–Bernoulli beam composed of two-directional functionally graded materials (FGMs) in thermal environment are analyzed. The material properties and temperature distributions are considered to be continuously varied along both axial and thickness directions. Such two-directional FGMs provide the basis of a promising strategy to tune the dynamic behavior of a structure in a controlled fashion, achieving tunable response as desired. The dynamic equation of the beam and relevant boundary conditions are derived based on Hamilton’s principle. The generalized differential quadrature method is used for determining the exact buckling configuration and the natural frequencies of the beam with different boundary conditions. Numerical results are presented to examine the effects of material gradations on the critical buckling temperature. It is concluded that both temperature change and material properties have significant influences on the natural frequency, which suggests that it is possible to tailor or tune the dynamic behaviors of a beam by using man-made FGMs in a complex environment.


Author(s):  
S. F. Nikrad ◽  
A. Kanellopoulos ◽  
M. Bodaghi ◽  
Z. T. Chen ◽  
A. Pourasghar

AbstractThe in-plane thermoelastic response of curved beams made of porous materials with different types of functionally graded (FG) porosity is studied in this research contribution. Nonlinear governing equations are derived based on the first-order shear deformation theory along with the nonlinear Green strains. The nonlinear governing equations are solved by the aid of the Rayleigh–Ritz method along with the Newton–Raphson method. The modified rule-of-mixture is employed to derive the material properties of imperfect FG porous curved beams. Comprehensive parametric studies are conducted to explore the effects of volume fraction and various dispersion patterns of porosities, temperature field, and arch geometry as well as boundary conditions on the nonlinear equilibrium path and stability behavior of the FG porous curved beams. Results reveal that dispersion and volume fraction of porosities have a significant effect on the thermal stability path, maximum stress, and bending moment at the crown of the curved beams. Moreover, the influence of porosity dispersion and structural geometry on the central radial and in-plane displacement of the curved beams is evaluated. Results show that various boundary conditions make a considerable difference in the central radial displacements of the curved beams with the same porosity dispersion. Due to the absence of similar results in the specialized literature, this paper is likely to provide pertinent results that are instrumental toward a reliable design of FG porous curved beams in thermal environment.


Author(s):  
M. R. Isvandzibaei ◽  
M. M. Najafizadeh ◽  
P. Khazaeinejad

In the present work, the free vibration of thin cylindrical shells with ring support made of functionally graded materials under various symmetrical boundary conditions is presented. Temperature and position dependent material properties are varied linearly through the thickness of the shell. The functionally graded cylindrical shell has ring support which is arbitrarily placed along the shell and imposed a zero lateral deflection. The third order shear deformation theory is employed to formulate the problem. The governing equations of motion are derived using the Hamilton’s principle. Results are presented on the frequency characteristics and influence of the boundary conditions and the locations of the ring support on the natural frequencies. The present analysis is validated by comparing the results with those available in the literature.


2017 ◽  
Vol 21 (2) ◽  
pp. 503-531 ◽  
Author(s):  
Keivan Torabi ◽  
Hasan Afshari

As a useful tool for designing wings and tail fins of aircrafts, this paper presents an optimization for flutter characteristics of cantilevered functionally graded sandwich plates. The plate is composed of an isotropic homogeneous core and two functionally graded face sheets. The plate is modeled based on the first-order shear deformation theory. The aerodynamic pressure is estimated using supersonic piston theory and using Hamilton's principle, the set of governing equations and boundary conditions are then derived. Applying a transformation of coordinates, governing equations and boundary conditions are converted and solved numerically by differential quadrature method. Natural frequencies, damping ratio, corresponding mode shapes, critical aerodynamic pressure, and flutter frequency are calculated. In order to achieve an optimum design, particle swarm optimization is employed to find the best values of aspect ratio, thickness of the plate, thickness of the core, power law index, and angles of the plate which increase critical aerodynamic pressure. Some constrains on the angles of the plate and its mass and area (lift force) are also considered.


2021 ◽  
pp. 107754632110004
Author(s):  
Hassan Afshari ◽  
Hossein Amirabadi

In this article, a comprehensive study is conducted on the free vibration analysis of rotating truncated conical shells reinforced with functionally graded agglomerated carbon nanotubes The shell is modeled based on the first-order shear deformation theory, and effective mechanical properties are calculated based on the Eshelby–Mori–Tanaka scheme along with the rule of mixture. By considering centrifugal and Coriolis accelerations and initial hoop tension, the set of governing equations is derived using Hamilton’s principle and is solved numerically using the differential quadrature method Convergence and accuracy of the presented model are confirmed and the effects of different parameters on the forward and backward frequencies of the rotating carbon nanotube-reinforced truncated conical shells are investigated.


2010 ◽  
Vol 123-125 ◽  
pp. 280-283
Author(s):  
Chang Yull Lee ◽  
Ji Hwan Kim

The post-buckling of the functionally graded composite plate under thermal environment with aerodynamic loading is studied. The structural model has three layers with ceramic, FGM and metal, respectively. The outer layers of the sandwich plate are different homogeneous and isotropic material properties for ceramic and metal. Whereas the core is FGM layer, material properties vary continuously from one interface to the other in the thickness direction according to a simple power law distribution in terms of the volume fractions. Governing equations are derived by using the principle of virtual work and numerical solutions are solved through a finite element method. The first-order shear deformation theory and von-Karman strain-displacement relations are based to derive governing equations of the plate. Aerodynamic effects are dealt by adopting nonlinear third-order piston theory for structural and aerodynamic nonlinearity. The Newton-Raphson iterative method applied for solving the nonlinear equations of the thermal post-buckling analysis


Author(s):  
Nastaran Shahmansouri ◽  
Mohammad Mohammadi Aghdam ◽  
Kasra Bigdeli

The present study investigates static analyses of moderately thick FG plates. Using the First Order Shear Deformation Theory (FSDT), functionally graded plates subjected to transversely distributed loading with various boundary conditions are studied. Effective mechanical properties which vary from one surface of the plate to the other assumed to be defined by a power law form of distribution. Different ceramic-metal sets of materials are studied. Solution of the governing equations, including five equilibrium and eight constitutive equations, is obtained by the Extended Kantorovich Method (EKM). The system of thirteen Partial Differential Equations (PDEs) in terms of displacements, rotations, force and moment resultants are considered as multiplications of separable function of independent variables x and y. Then by successful utilization of the EKM these equations are converted to a double set of ODE systems in terms of x and y. The obtained ODE systems are then solved iteratively until final convergence is achieved. Closed form solution is presented for these ODE sets. It is shown that the method is very stable and provides fast convergence and highly accurate predictions for both thin and moderately thick plates. Comparison of the normal stresses at various points of rectangular plates and deflection of mid-point of the plate are presented and compared with available data in the literature. The effects of the volume fraction exponent n on the behavior of the normalized deflection, moment resultants and stresses of FG plates are also studied. To validate data for analysis fully clamped FG plates, another analysis was carried out using finite element code ANSYS. Close agreement is observed between predictions of the EKM and ANSYS.


Sign in / Sign up

Export Citation Format

Share Document