Active damping of sound transmission through an electrorheological fluid-actuated sandwich cylindrical shell

2018 ◽  
Vol 22 (3) ◽  
pp. 833-865 ◽  
Author(s):  
Seyyed M Hasheminejad ◽  
Masoud Cheraghi ◽  
Ali Jamalpoor

An exact model is proposed for sound transmission through a sandwich cylindrical shell of infinite extent that includes a tunable electrorheological fluid core, and is obliquely insonified by a plane progressive acoustic wave. The basic formulation utilizes Hamilton’s variational principle, the classical and first order shear deformation shell theories, the Kelvin–Voigt viscoelastic damping model (for the electrorheological fluid-core layer), and the wave equations for internal/external acoustic domains coupled by the proper fluid/structure compatibility relations. The Fourier–Bessel series expansions are used to arrange the governing (coupled) system equations in state-space form. The classical Sliding Mode Control law is then applied to semi-actively reduce sound transmission through the composite cylinder by smart variation of stiffness and damping characteristics of the electrorheological fluid-core actuator layer according to the control command. Numerical results present both the uncontrolled and controlled sound transmission loss spectra of the sandwich cylindrical shell at three angles of incidence for three distinct sets of material input parameters that represent the electric-field dependency of the complex shear modulus of the electrorheological fluid-core layer. The superior soundproof performance of electrorheological fluid-based sliding mode control system in avoiding the highly detrimental sound transmission loss dips occurring throughout the critical resonance and coincidence regions is demonstrated. Likewise, remarkable enhancements in the sound insulation characteristics of the electrorheological fluid-actuated structure utilizing the first or second electrorheological fluid material model are achieved within the stiffness-controlled region, especially at lower frequencies in near-grazing incidence situation. A number of limiting cases are introduced and validity of the formulation is confirmed by comparison with the available data.

Author(s):  
Masoud Hemmatian ◽  
Ramin Sedaghati

This study aims to investigate the sound transmission loss (STL) capability of sandwich panels treated with Magnetorheological (MR) fluids at low frequencies. An experimental setup has been designed to investigate the effect of the intensity of the applied magnetic field on the natural frequencies and STL of a clamped circular plate. A multilayered uniform circular panel comprising two elastic face sheets and MR fluid core layer is fabricated. It is shown that as the applied magnetic field increases, the fundamental natural frequency of the MR sandwich panel increases. Moreover, the STL of the panel at the resonance frequency considerably increases under applied magnetic field. Furthermore, an analytical model for the STL of the finite multilayered panels with MR core layer is developed and compared with the experimental measurements. The MR core layer is treated as a viscoelastic material with complex shear modulus. It is shown that good agreement exists between the analytical and experimental results. Parametric study has also been conducted to investigate the effect of face sheets and core layers’ thickness.


2021 ◽  
pp. 107754632098213
Author(s):  
Seyyed M Hasheminejad ◽  
Ali Jamalpoor

A 3D analytical model is formulated for diffuse sound field transmission control through a smart hybrid double concentric sandwich circular cylindrical shell structure in presence of external and internal air gap mean flows. The multi-input multi-output sliding mode control is applied to enhance the sound transmission loss characteristics via direct control action of a uniform force piezoelectric actuator layer along with semi-active variation of the stiffness/damping characteristics of the electrorheological fluid core layer incorporated in a non-collocated configuration within the external or internal shell structure. Extensive numerical simulations examine the uncontrolled/controlled diffuse field sound transmission loss spectrums in a broad frequency range for single-wall and hybrid double-wall sandwich shells at selected external and air gap Mach numbers. The proposed smart hybrid active/semi-active double-wall configuration is demonstrated to provide satisfactory overall acoustic insulation control performance with much lower operative energy requirements. Limiting cases are considered, and validity of the formulation is verified against the available data.


2022 ◽  
pp. 107754632110467
Author(s):  
Shohreh Reaei ◽  
Roohollah Talebitooti

The present study is concerned with an analytical solution for calculating sound transmission loss through an infinite double-walled circular cylindrical shell with two isotropic skins and a polymeric foam core. Accordingly, the two-walled cylindrical shell is stimulated applying an acoustic oblique plane wave. The equations of motion are derived according to Hamilton’s principle using the first-order shear deformation theory for every three layers of the construction. Additionally, by the aid of employing the Zener mathematical model for the core of polymeric foam, mechanical properties are determined. To authenticate the results of this study, the damping of the core layer goes to zero. Therefore, the numerical results in this special case are compared with those of isotropic shells. The results prove that the presented model has high accuracy. It is also designated that decreasing the power-law exponent of the core leads to improving the sound transmission loss through the thickness of the construction. Besides, in addition to probe some configurations versus alterations of frequencies and dimensions, the convergence algorithm is provided. Consequently, it is realized that by increasing the excitation frequency, the minimum number of modes to find the convergence conditions is enhanced. The results also contain a comparison between the sound transmission loss coefficient for four different models of a core of a sandwiched cylindrical shell. It is comprehended that the presented model has a transmission loss coefficient more than the other types of the core at high frequencies.


2017 ◽  
Vol 20 (6) ◽  
pp. 661-691 ◽  
Author(s):  
Seyyed M Hasheminejad ◽  
A Fadavi-Ardakani

The transient vibroacoustic response mitigation of a rectangular sandwich panel with an adaptive electro-rheological fluid core layer, and backed by a hard-walled reverberant rectangular parallelepiped acoustic enclosure, is investigated. The problem is analyzed in a multidisciplinary framework that involves the thin sandwich electro-rheological fluid-based plate model, the 3D wave equation for the acoustic enclosure domain, the first-order Kelvin–Voigt viscoelastic model for the electro-rheological fluid core material, the pertinent structure–fluid compatibility relation, and the inherently robust sliding mode control strategy. The generalized Fourier expansion method is utilized to set up the fully coupled system equations in the state–space domain, and the fourth-order Runge-Kutta time marching technique is then utilized to compute both uncontrolled and controlled coupled system responses in three basic external loading configurations. It is found that increasing the cavity depth has a substantial restraining effect on the overall sound pressure response levels, while the electro-rheological fluid-panel displacement response amplitudes experience only moderate reductions. Also, a purely passive electro-rheological fluid-based system is observed not to be very effective for vibroacoustic response suppression of the cavity-coupled structural system, while the overall success of the applied sliding mode control methodology in reasonable reduction of both panel displacement and sound pressure time response amplitudes is demonstrated. Furthermore, the control system authority with regard to the acoustic cavity pressure (panel displacement) is found to moderately (slightly) decrease as the cavity depth increases. Limiting cases are considered and accuracy of the suggested analytical model is checked against the output of an FEM package as well as with the accessible literature results. Moreover, the main components of a prospective experimental platform for verifying the performance of proposed vibroacoustic control system are briefly described.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ali Nouri ◽  
Sohrab Astaraki

The maximizing of sound transmission loss (TL) across a functionally graded material (FGM) cylindrical shell has been conducted using a genetic algorithm (GA). To prevent the softening effect from occurring due to optimization, the objective function is modified based on the first resonant frequency. Optimization is performed over the frequency range 1000–4000 Hz, where the ear is the most sensitive. The weighting constants are chosen here to correspond to an A-weighting scale. Since the weight of the shell structure is an important concern in most applications, the weight of the optimized structure is constrained. Several traditional materials are used and the result shows that optimized shells with aluminum-nickel and aluminum-steel FGM are the most effective at maximizing TL at both stiffness and mass control region, while they have minimum weight.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4160
Author(s):  
Tom Ehrig ◽  
Martin Dannemann ◽  
Ron Luft ◽  
Christian Adams ◽  
Niels Modler ◽  
...  

Compressible Constrained Layer Damping (CCLD) is a novel, semi-active, lightweight-compatible solution for vibration mitigation based on the well-known constrained layer damping principle. The sandwich-like CCLD set-up consists of a base structure, a constraining plate, and a compressible open-cell foam core in between, enabling the adjustment of the structure’s vibration behaviour by changing the core compression using different actuation pressures. The aim of the contribution is to show to what degree, and in which frequency range the acoustic behaviour can be tuned using CCLD. Therefore, the sound transmission loss (TL), as an important vibro-acoustic index, is determined in an acoustic window test stand at different actuation pressures covering a frequency range from 0.5 to 5 kHz. The different actuation pressures applied cause a variation of the core layer thickness (from 0.9 d0 to 0.3 d0), but the resulting changes of the stiffness and damping of the overall structure have no significant influence on the TL up to approximately 1 kHz for the analysed CCLD design. Between 1 kHz and 5 kHz, however, the TL can be influenced considerably well by the actuation pressure applied, due to a damping-dominated behaviour around the critical frequency.


Sign in / Sign up

Export Citation Format

Share Document