Bending fatigue of single-wall and double-wall corrugated paperboards under sinusoidal and random loads

2021 ◽  
pp. 109963622110204
Author(s):  
Zhi-Wei Wang ◽  
Yang-Zhou Lai ◽  
Li-Jun Wang

The bending fatigue tests of single-wall and double-wall corrugated paperboards were conducted to obtain the εrms– N curves under sinusoidal and random loads in this paper. The εrms– N equation of corrugated paperboard can be described by modified Coffin–Manson model considering the effect of mean stress. Four independent fatigue parameters are obtained for single-wall and double-wall corrugated paperboards. The εrms– N curve under random load moves left and rotates clockwise compared with that under sinusoidal load. The fatigue life under random load is much less than that under sinusoidal load, and the fatigue design of corrugated box should be based on the fatigue result under random load. The stiffness degradation and energy dissipation of double-wall corrugated paperboard before approaching fatigue failure are very different from that of single-wall one. For double-wall corrugated paperboard, two turning points occur in the stiffness degradation, and fluctuation occurs in the energy dissipation. Different from metal materials, the bending fatigue failure of corrugated paperboard is a process of wrinkle forming, spreading, and folding. The results obtained have practical values for the design of vibration fatigue of corrugated box.

2014 ◽  
Vol 638-640 ◽  
pp. 1741-1744
Author(s):  
Liang Hong ◽  
Yu Hai

Fatigue of steel and other metal materials focused on fatigue strength and fatigue damage accumulation in two ways. Continuous hot air axially deformed bars fatigue tests showed that fatigue failure often occurs at the maximum defect reinforced, and bending fatigue tests of reinforced concrete structures, fatigue failure often occurs in areas of reinforced concrete curved split effective cross-sectional area decreases place. This paper studies the construction of reinforced fatigue effect on the structural performance and the fatigue reliability theory has some theoretical significance.


Author(s):  
W. H. Chai ◽  
X. D. Liu ◽  
Y. C. Shan ◽  
J. G. Wang

Bending fatigue test of vehicle wheel is the main test to verify the mechanics performance of spoke. The wheel is fastened to the bending fatigue test platform with bolts in the bending fatigue test. A cyclic bending moment is applied to the wheel, and after some number of cycles, fatigue failure will happen. In this paper, the bending fatigue test is carried out on a steel wheel and a wheel made of long glass fiber reinforced thermoplastic (LGFT) wheel, and infrared imager is used to monitor the temperature distribution and variation of wheels under bending loads in the test process. After the test, it is found that there are cracks at the highest-temperature spots. In addition, because some cracks of LGFT wheel are too tiny to be found, it’s convenient to search those cracks according to the high-temperature areas in infrared images. All above indicate that it is practicable to predict fatigue failure area by monitoring temperature distribution and variation in wheel bending fatigue test. A method for real-time prediction of fatigue failure area in wheel bending fatigue test is described in this paper, which is also helpful to real-time prediction of fatigue failure area in fatigue tests of other products.


2009 ◽  
Vol 51 (9) ◽  
pp. 580-586 ◽  
Author(s):  
Bernd Oberwinkler ◽  
Martin Riedler ◽  
Heinz Leitner ◽  
Ataollah Javidi

2012 ◽  
Vol 184-185 ◽  
pp. 701-706
Author(s):  
Ming Xing Qiu ◽  
Chuang Shao ◽  
Yong Zhou ◽  
Li Hua Yue

In order to determine the fatigue limits of two kinds of titanium alloy pipes connected by welding and rolling, fatigue tests were carried out by the Aero-Criterion which gives vibration fatigue test method and failure criteria. A laser-displacement-sensor was used at the free end and a strain-gauge at the root of the pipe specimen. The test result shows that the fatigue limit of the welded pipe is higher than the rolled one. In the end some new findings are listed according to the test.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Jiang ◽  
Gun Jin Yun ◽  
Li Zhao ◽  
Junyong Tao

Novel accelerated random vibration fatigue test methodology and strategy are proposed, which can generate a design of the experimental test plan significantly reducing the test time and the sample size. Based on theoretical analysis and fatigue damage model, several groups of random vibration fatigue tests were designed and conducted with the aim of investigating effects of both Gaussian and non-Gaussian random excitation on the vibration fatigue. First, stress responses at a weak point of a notched specimen structure were measured under different base random excitations. According to the measured stress responses, the structural fatigue lives corresponding to the different vibrational excitations were predicted by using the WAFO simulation technique. Second, a couple of destructive vibration fatigue tests were carried out to validate the accuracy of the WAFO fatigue life prediction method. After applying the proposed experimental and numerical simulation methods, various factors that affect the vibration fatigue life of structures were systematically studied, including root mean squares of acceleration, power spectral density, power spectral bandwidth, and kurtosis. The feasibility of WAFO for non-Gaussian vibration fatigue life prediction and the use of non-Gaussian vibration excitation for accelerated fatigue testing were experimentally verified.


Wear ◽  
1995 ◽  
Vol 181-183 ◽  
pp. 537-543 ◽  
Author(s):  
Z.R. Zhou ◽  
S. Goudreau ◽  
M. Fiset ◽  
A. Cardou

1952 ◽  
Vol 19 (1) ◽  
pp. 54-56
Author(s):  
F. A. McClintock

Abstract A statistical analysis is developed to show how a microscopic shear failure can result in the apparent tensile failure of polycrystalline iron in rotary bending fatigue tests.


2021 ◽  
Author(s):  
LAUREN KADLEC ◽  
CASSANDRA HALLER ◽  
YOUNG KWON ◽  
SOO-JEONG PARK ◽  
YUN-HAE KIM

A framework was presented for a fatigue failure model of fibrous composites using a multiscale approach, which uses the fatigue data of the fiber and matrix materials, respectively. Using this model, fatigue failure of fibrous composite materials and structures can be predicted from the constituent material behaviors. To that end, fiber bundles were tested under cyclic loading to determine their residual strength and stiffness. A successful completion of the model is expected to replace many fatigue tests as the configuration of the fibrous composite is varied.


2021 ◽  
pp. 1-17
Author(s):  
Luca Bonaiti ◽  
Ahmed Bayoumi Mahmoud Bayoumi ◽  
Franco Concli ◽  
Francesco Rosa ◽  
Carlo Gorla

Abstract Gear tooth breakage due to bending fatigue is one of the most dangerous failure modes of gears. Therefore, the precise definition of tooth bending strength is of utmost importance in gear design. Single Tooth Bending Fatigue (STBF) tests are usually used to study this failure mode, since they allow to test gears, realized and finished with the actual industrial processes. Nevertheless, STBF tests do not reproduce exactly the loading conditions of meshing gears. The load is applied in a pre-determined position, while in meshing gears it moves along the active flank; all the teeth can be tested and have the same importance, while the actual strength of a meshing gear, practically, is strongly influenced by the strength of the weakest tooth of the gear. These differences have to be (and obviously are) taken into account when using the results of STBF tests to design gear sets. The aim of this paper is to investigate in detail the first aspect, i.e. the role of the differences between two tooth root stress histories. In particular, this paper presents a methodology based on high-cycle multi-axial fatigue criteria in order to translate STBF test data to the real working condition; residual stresses are also taken into account


Sign in / Sign up

Export Citation Format

Share Document