scholarly journals CSF inflammatory biomarkers responsive to treatment in progressive multiple sclerosis capture residual inflammation associated with axonal damage

2018 ◽  
Vol 25 (7) ◽  
pp. 937-946 ◽  
Author(s):  
Jeppe Romme Christensen ◽  
Mika Komori ◽  
Marina Rode von Essen ◽  
Rikke Ratzer ◽  
Lars Börnsen ◽  
...  

Background: Development of treatments for progressive multiple sclerosis (MS) is challenged by the lack of sensitive and treatment-responsive biomarkers of intrathecal inflammation. Objective: To validate the responsiveness of cerebrospinal fluid (CSF) inflammatory biomarkers to treatment with natalizumab and methylprednisolone in progressive MS and to examine the relationship between CSF inflammatory and tissue damage biomarkers. Methods: CSF samples from two open-label phase II trials of natalizumab and methylprednisolone in primary and secondary progressive MS. CSF concentrations of 20 inflammatory biomarkers and CSF biomarkers of axonal damage (neurofilament light chain (NFL)) and demyelination were analysed using electrochemiluminescent assay and enzyme-linked immunosorbent assay (ELISA). Results: In all, 17 natalizumab- and 23 methylprednisolone-treated patients had paired CSF samples. CSF sCD27 displayed superior standardised response means and highly significant decreases during both natalizumab and methylprednisolone treatment; however, post-treatment levels remained above healthy donor reference levels. Correlation analyses of CSF inflammatory biomarkers and NFL before, during and after treatment demonstrated that CSF sCD27 consistently correlates with NFL. Conclusion: These findings validate CSF sCD27 as a responsive and sensitive biomarker of intrathecal inflammation in progressive MS, capturing residual inflammation after treatment. Importantly, CSF sCD27 correlates with NFL, consistent with residual inflammation after anti-inflammatory treatment being associated with axonal damage.

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Mickael Bonnan ◽  
Sylvie Ferrari ◽  
Henri Courtade ◽  
Paul Money ◽  
Pauline Desblache ◽  
...  

Background. The progressive phase of multiple sclerosis (MS) is characterized by an intrathecal (IT) compartmentalization of inflammation, involving B-cells within meningeal follicles, and resisting all the available immunosuppressive treatments. A new therapeutic paradigm may be to target this inflammation by injecting immunosuppressive drugs inside the central nervous system compartment. Methods. We designed a single-center, open-label, randomized, controlled, phase II study designed to evaluate the safety and efficacy of IT rituximab in progressive MS (EFFRITE trial; ClinicalTrial Registration NCT02545959). Patients were randomized into three arms (1 : 1 : 1): control group, IT rituximab (20 mg, IT) group, and intravenous+IT (IV+IT) group. The main outcome was a change in levels of CSF biomarkers of inflammation (osteopontin). Secondary outcomes were changes in levels of CSF biomarkers of axonal loss (neurofilament light chain) and clinical and MRI changes. Results. Ten patients were included (2 : 4 : 4). No adverse event occurred. OPN level remained stable in CSF at each time point, whereas NFL had slightly decreased (-8.7%) at day 21 ( p = 0.02 ). Clinical parameters remained stable and leptomeningeal enhancements remained unchanged. Conclusion. Clinical outcome and biomarkers of inflammation were not dramatically modified after IT injection of rituximab, probably due to its limited efficiency in CSF. Drug issues for future studies are discussed.


2013 ◽  
Vol 20 (1) ◽  
pp. 43-50 ◽  
Author(s):  
Markus Axelsson ◽  
Clas Malmeström ◽  
Martin Gunnarsson ◽  
Henrik Zetterberg ◽  
Peter Sundström ◽  
...  

Background: In progressive multiple sclerosis (PMS), disease-modifying therapies have not been shown to reduce disability progression. Objective: The impact from immunosuppressive therapy in PMS was explored by analyzing cerebrospinal fluid (CSF) biomarkers of axonal damage (neurofilament light protein, NFL), astrogliosis (glial fibrillary acidic protein, GFAP), and B-cell regulation (CXCL13). Methods: CSF was obtained from 35 patients with PMS before and after 12–24 months of mitoxantrone ( n=30) or rituximab ( n=5) treatment, and from 14 age-matched healthy control subjects. The levels of NFL, GFAP, and CXCL13 were determined by immunoassays. Results: The mean NFL level decreased by 51% (1781 ng/l, SD 2018 vs. 874 ng/l, SD 694, p=0.007), the mean CXCL13 reduction was 55% (9.71 pg/ml, SD 16.08, vs. 4.37 pg/ml, SD 1.94, p=0.008), while GFAP levels remained unaffected. Subgroup analysis showed that the NFL reduction was confined to previously untreated patients ( n=20) and patients with Gd-enhancing lesions on magnetic resonance imaging ( n=12) prior to study baseline. Conclusions: Our data imply that 12–24 months of immunosuppressive therapy reduces axonal damage in PMS, particularly in patients with ongoing disease activity. Determination of NFL levels in CSF is a potential surrogate marker for treatment efficacy and as endpoint in phase II trials of MS.


2015 ◽  
Vol 21 (14) ◽  
pp. 1761-1770 ◽  
Author(s):  
S Modvig ◽  
M Degn ◽  
H Roed ◽  
TL Sørensen ◽  
HBW Larsson ◽  
...  

Background: Cerebrospinal fluid (CSF) biomarkers have been suggested to predict multiple sclerosis (MS) after clinically isolated syndromes, but studies investigating long-term prognosis are needed. Objective: To assess the predictive ability of CSF biomarkers with regard to MS development and long-term disability after optic neuritis (ON). Methods: Eighty-six patients with ON as a first demyelinating event were included retrospectively. Magnetic resonance imaging (MRI), CSF leukocytes, immunoglobulin G index and oligoclonal bands were registered. CSF levels of chitinase-3-like-1, osteopontin, neurofilament light-chain, myelin basic protein, CCL2, CXCL10, CXCL13 and matrix metalloproteinase-9 were measured by enzyme-linked immunosorbent assay. Patients were followed up after 13.6 (range 9.6–19.4) years and 81.4% were examined, including Expanded Disability Status Scale and MS functional composite evaluation. 18.6% were interviewed by phone. Cox regression, multiple regression and Spearman correlation analyses were used. Results: Forty-six (53.5%) developed clinically definite MS (CDMS) during follow-up. In a multivariate model MRI ( p=0.0001), chitinase 3-like 1 ( p=0.0033) and age ( p=0.0194) combined predicted CDMS best. Neurofilament light-chain predicted long-term disability by the multiple sclerosis severity scale ( p=0.0111) and nine-hole-peg-test ( p=0.0202). Chitinase-3-like-1 predicted long-term cognitive impairment by the paced auditory serial addition test ( p=0.0150). Conclusion: Neurofilament light-chain and chitinase-3-like-1 were significant predictors of long-term physical and cognitive disability. Furthermore, chitinase-3-like-1 predicted CDMS development. Thus, these molecules hold promise as clinically valuable biomarkers after ON as a first demyelinating event.


2017 ◽  
Vol 23 (13) ◽  
pp. 1727-1735 ◽  
Author(s):  
Finn Sellebjerg ◽  
Lars Börnsen ◽  
Cecilie Ammitzbøll ◽  
Jørgen Erik Nielsen ◽  
Tua Vinther-Jensen ◽  
...  

Background: It is unknown whether disease activity according to consensus criteria (magnetic resonance imaging activity or clinical relapses) associate with cerebrospinal fluid (CSF) changes in progressive multiple sclerosis (MS). Objective: To compare CSF biomarkers in active and inactive progressive MS according to consensus criteria. Methods: Neurofilament light chain (NFL), myelin basic protein (MBP), IgG-index, chitinase-3-like-1 (CHI3L1), matrix metalloproteinase-9 (MMP-9), chemokine CXCL13, terminal complement complex, leukocyte counts and nitric oxide metabolites were measured in primary ( n = 26) and secondary progressive MS ( n = 26) and healthy controls ( n = 24). Results: Progressive MS patients had higher CSF cell counts, IgG-index, CHI3L1, MMP-9, CXCL13, NFL and MBP concentrations. Active patients were younger and had higher NFL, CXCL13 and MMP-9 concentrations than inactive patients. Patients with active disease according to consensus criteria or detectable CXCL13 or MMP-9 in CSF were defined as having combined active progressive MS. These patients had increased CSF cell counts, IgG-index and MBP, NFL and CHI3L1 concentrations. Combined inactive patients only had increased IgG-index and MBP concentrations. Conclusion: Patients with combined active progressive MS show evidence of inflammation, demyelination and neuronal/axonal damage, whereas the remaining patients mainly show evidence of active demyelination. This challenges the idea that neurodegeneration independent of inflammation is crucial in disease progression.


2012 ◽  
Vol 19 (7) ◽  
pp. 877-884 ◽  
Author(s):  
Jeppe Romme Christensen ◽  
Lars Börnsen ◽  
Mohsen Khademi ◽  
Tomas Olsson ◽  
Poul Erik Jensen ◽  
...  

Background: The mechanism underlying disease progression in progressive multiple sclerosis (MS) is uncertain. Pathological studies found widespread inflammation in progressive MS brains correlating with disease progression and axonal damage. Objectives: To study cerebrospinal fluid (CSF) biomarkers and clarify whether inflammation and axonal damage are associated in progressive MS. Methods: Using enzyme-linked immunosorbent assay (ELISA), we analysed CSF from 40 secondary progressive (SPMS), 21 primary progressive (PPMS), and 36 relapsing–remitting (RRMS) and 20 non-inflammatory neurological disease (NIND) patients. Twenty-two of the SPMS patients participated in an MBP8298 peptide clinical trial and had CSF follow-up after one year. Results: Compared to NIND patients, inflammatory biomarkers osteopontin and matrix metalloproteinase-9 (MMP9) were increased in all MS patients while CXCL13 was increased in RRMS and SPMS patients. Biomarkers of axonal damage (NFL) and demyelination (MBP) were increased in all MS patients. In progressive MS patients CSF levels of osteopontin and CXCL13 correlated with NFL while osteopontin and MMP9 correlated with MBP. MBP8298 treatment did not affect the levels of the biomarkers after one year of treatment. All biomarkers were continuously increased after one year of follow-up except MBP, which decreased. Conclusion: CSF biomarkers of inflammation, axonal damage and demyelination are continuously increased in progressive MS patients and correlate. These findings parallel pathology studies, emphasise a relationship between inflammation, axonal damage and demyelination and support the use of CSF biomarkers in progressive MS clinical trials.


2020 ◽  
Vol 117 (23) ◽  
pp. 12952-12960 ◽  
Author(s):  
Jesse Huang ◽  
Mohsen Khademi ◽  
Lars Fugger ◽  
Örjan Lindhe ◽  
Lenka Novakova ◽  
...  

Effective biomarkers for multiple sclerosis diagnosis, assessment of prognosis, and treatment responses, in particular those measurable in blood, are largely lacking. We have investigated a broad set of protein biomarkers in cerebrospinal fluid (CSF) and plasma using a highly sensitive proteomic immunoassay. Cases from two independent cohorts were compared with healthy controls and patients with other neurological diseases. We identified and replicated 10 cerebrospinal fluid proteins including IL-12B, CD5, MIP-1a, and CXCL9 which had a combined diagnostic efficacy similar to immunoglobulin G (IgG) index and neurofilament light chain (area under the curve [AUC] = 0.95). Two plasma proteins, OSM and HGF, were also associated with multiple sclerosis in comparison to healthy controls. Sensitivity and specificity of combined CSF and plasma markers for multiple sclerosis were 85.7% and 73.5%, respectively. In the discovery cohort, eotaxin-1 (CCL11) was associated with disease duration particularly in patients who had secondary progressive disease (PCSF< 4 × 10−5,Pplasma< 4 × 10−5), and plasma CCL20 was associated with disease severity (P= 4 × 10−5), although both require further validation. Treatment with natalizumab and fingolimod showed different compartmental changes in protein levels of CSF and peripheral blood, respectively, including many disease-associated markers (e.g., IL12B, CD5) showing potential application for both diagnosing disease and monitoring treatment efficacy. We report a number of multiple sclerosis biomarkers in CSF and plasma for early disease detection and potential indicators for disease activity. Of particular importance is the set of markers discovered in blood, where validated biomarkers are lacking.


Neurology ◽  
2020 ◽  
Vol 95 (10) ◽  
pp. 436-444 ◽  
Author(s):  
Raju Kapoor ◽  
Kathryn E. Smith ◽  
Mark Allegretta ◽  
Douglas L. Arnold ◽  
William Carroll ◽  
...  

There is an unmet need in multiple sclerosis (MS) therapy for treatments to stop progressive disability. The development of treatments may be accelerated if novel biomarkers are developed to overcome the limitations of traditional imaging outcomes revealed in early phase trials. In January 2019, the International Progressive MS Alliance convened a standing expert panel to consider potential tissue fluid biomarkers in MS in general and in progressive MS specifically. The panel focused their attention on neurofilament light chain (NfL) in serum or plasma, examining data from both relapsing and progressive MS. Here, we report the initial conclusions of the panel and its recommendations for further research. Serum NfL (sNfL) is a plausible marker of neurodegeneration that can be measured accurately, sensitively, and reproducibly, but standard procedures for sample processing and analysis should be established. Findings from relapsing and progressive cohorts concur and indicate that sNfL concentrations correlate with imaging and disability measures, predict the future course of the disease, and can predict response to treatment. Importantly, disease activity from active inflammation (i.e., new T2 and gadolinium-enhancing lesions) is a large contributor to sNfL, so teasing apart disease activity from the disease progression that drives insidious disability progression in progressive MS will be challenging. More data are required on the effects of age and comorbidities, as well as the relative contributions of inflammatory activity and other disease processes. The International Progressive MS Alliance is well positioned to advance these initiatives by connecting and supporting relevant stakeholders in progressive MS.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sara Momtazmanesh ◽  
Parnian Shobeiri ◽  
Amene Saghazadeh ◽  
Charlotte E. Teunissen ◽  
Joachim Burman ◽  
...  

Abstract Multiple sclerosis (MS) is a neurodegenerative disease associated with inflammatory demyelination and astroglial activation, with neuronal and axonal damage as the leading factors of disability. We aimed to perform a meta-analysis to determine changes in CSF levels of neuronal and glial biomarkers, including neurofilament light chain (NFL), total tau (t-tau), chitinase-3-like protein 1 (CHI3L1), glial fibrillary acidic protein (GFAP), and S100B in various groups of MS (MS versus controls, clinically isolated syndrome (CIS) versus controls, CIS versus MS, relapsing-remitting MS (RRMS) versus progressive MS (PMS), and MS in relapse versus remission. According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, we included 64 articles in the meta-analysis, including 4071 subjects. For investigation of sources of heterogeneity, subgroup analysis, meta-regression, and sensitivity analysis were conducted. Meta-analyses were performed for comparisons including at least three individual datasets. NFL, GFAP, t-tau, CHI3L1, and S100B were higher in MS and NFL, t-tau, and CHI3L1 were also elevated in CIS patients than controls. CHI3L1 was the only marker with higher levels in MS than CIS. GFAP levels were higher in PMS versus RRMS, and NFL, t-tau, and CHI3L1 did not differ between different subtypes. Only levels of NFL were higher in patients in relapse than remission. Meta-regression showed influence of sex and disease severity on NFL and t-tau levels, respectively and disease duration on both. Added to the role of these biomarkers in determining prognosis and treatment response, to conclude, they may serve in diagnosis of MS and distinguishing different subtypes.


2004 ◽  
Vol 10 (6) ◽  
pp. 601-606 ◽  
Author(s):  
R Ehling ◽  
A Lutterotti ◽  
J Wanschitz ◽  
M Khalil ◽  
C Gneiss ◽  
...  

We investigated whether serum and cerebrospinal fluid (CSF) antibodies to the light subunit of the NF protein (NF-L), a main component of the axonal cytoskeleton, may serve as biological markers for axonal pathology and/or disease progression in multiple sclerosis (MS). IgG to NF-L was measured in sera and CSF of MS patients, patients with inflammatory demyelinating diseases of the PNS, with acute inflammatory neurological diseases (including bacterial and viral meningitis), with neurodegenerative diseases, with acute noninflammatory neurological diseases (including stroke, headache and backache) and healthy controls by enzyme-linked immunosorbent assay. We found that serum anti-NF-L IgG antibodies were significantly elevated in MS patients with primary progressive disease course and we provide evidence for an intrathecal production of these antibodies. Our findings support the use of serum antibodies to NF-L as a marker for axonal destruction.


Sign in / Sign up

Export Citation Format

Share Document