Detection and clinical correlation of leukocortical lesions in pediatric-onset multiple sclerosis on multi-contrast MRI

2018 ◽  
Vol 25 (7) ◽  
pp. 980-986 ◽  
Author(s):  
Josefina Maranzano ◽  
Christine Till ◽  
Haz-Edine Assemlal ◽  
Vladimir Fonov ◽  
Robert Brown ◽  
...  

Objective: To determine the frequency of cortical lesions (CLs) in patients with pediatric-onset multiple sclerosis (POMS) using multi-contrast magnetic resonance imaging (MRI), and the relationship between frontal CL load and upper limb dexterity assessed with the Nine-Hole Peg Test (9-HPT). Methods: Participants completed the 9-HPT and were imaged on a 3T MRI scanner to collect T1-weighted three-dimensional (3D) magnetization prepared rapid gradient echo (MPRAGE), proton density–weighted, T2-weighted and fluid-attenuated inversion recovery (FLAIR) images. CLs were manually segmented using all MRI contrasts. Results: We enrolled 24 participants with POMS (mean (standard deviation) age at first symptom: 13.3 (±2.7) years; mean age at scan: 18.8 (±3) years; mean disease duration of 5 (±3.2) years). A total of 391 CLs (mean, 16.3 ± 27.2; median, 7) were identified in 19 of 24 POMS patients (79%). The total number of CLs was positively associated with white matter lesion volume ( p = 0.04) but not with thalamic volume, age at the time of the scan, or disease duration. The number of frontal CLs was associated with slower performance on the 9-HPT ( p = 0.05). Conclusion: Multi-contrast 3T MRI led to a high rate of CL detection, demonstrating that cortical pathology occurs even in pediatric-onset disease. Frontal lobe CL count was associated with reduced manual dexterity, indicating that these CLs are clinically relevant.

2020 ◽  
pp. 135245852092136 ◽  
Author(s):  
Ivan Coronado ◽  
Refaat E Gabr ◽  
Ponnada A Narayana

Objective: The aim of this study is to assess the performance of deep learning convolutional neural networks (CNNs) in segmenting gadolinium-enhancing lesions using a large cohort of multiple sclerosis (MS) patients. Methods: A three-dimensional (3D) CNN model was trained for segmentation of gadolinium-enhancing lesions using multispectral magnetic resonance imaging data (MRI) from 1006 relapsing–remitting MS patients. The network performance was evaluated for three combinations of multispectral MRI used as input: (U5) fluid-attenuated inversion recovery (FLAIR), T2-weighted, proton density-weighted, and pre- and post-contrast T1-weighted images; (U2) pre- and post-contrast T1-weighted images; and (U1) only post-contrast T1-weighted images. Segmentation performance was evaluated using the Dice similarity coefficient (DSC) and lesion-wise true-positive (TPR) and false-positive (FPR) rates. Performance was also evaluated as a function of enhancing lesion volume. Results: The DSC/TPR/FPR values averaged over all the enhancing lesion sizes were 0.77/0.90/0.23 using the U5 model. These values for the largest enhancement volumes (>500 mm3) were 0.81/0.97/0.04. For U2, the average DSC/TPR/FPR values were 0.72/0.86/0.31. Comparable performance was observed with U1. For all types of input, the network performance degraded with decreased enhancement size. Conclusion: Excellent segmentation of enhancing lesions was observed for enhancement volume ⩾70 mm3. The best performance was achieved when the input included all five multispectral image sets.


2016 ◽  
Vol 23 (3) ◽  
pp. 464-472 ◽  
Author(s):  
Varun Sethi ◽  
Govind Nair ◽  
Martina Absinta ◽  
Pascal Sati ◽  
Arun Venkataraman ◽  
...  

Background: At autopsy, 20%–40% of chronic multiple sclerosis (MS) lesions are labeled “slowly expanding” and feature myelin phagocytosis at the lesion edge. As pathological lesion classification relies on a single, terminal time point, the rate of lesion expansion cannot be directly measured. Objective: To study long-term volume changes in individual MS lesions. Methods: Volumes of individual lesions on proton density magnetic resonance imaging (MRI) acquired between 1992 and 2015 were measured in 22 individuals (one lesion per person). After correction for acquisition protocol, a mixed model evaluated lesion volume changes. Results: The mean (standard deviation) lesion volume at baseline was 142 (82) mL, falling to 74 (51) mL after 16 (3) years. All lesions shrank over time. Change in lesion volume did not correlate with change in supratentorial brain volume ( p = 0.33). In simulations, the results could be explained by a process of slow radial expansion superimposed on substantially more rapid resorption of damaged tissue. Conclusion: We noted sustained radiological contraction of MS lesions, a surprising result given that fresh myelin breakdown products within chronic active lesions are observed relatively frequently at autopsy. Therefore, the primary pathological process in chronic lesions, even those described as “slowly expanding,” is likely to be tissue loss.


2019 ◽  
Vol 26 (2) ◽  
pp. 177-187 ◽  
Author(s):  
Jonathan Zurawski ◽  
Shahamat Tauhid ◽  
Renxin Chu ◽  
Fariha Khalid ◽  
Brian C Healy ◽  
...  

Background: Meningeal inflammation may contribute to gray matter (GM) involvement in multiple sclerosis (MS) and is proposed to manifest as magnetic resonance imaging (MRI) leptomeningeal enhancement (LME). Objective: To investigate how LME relates to GM lesions in relapsing-remitting multiple sclerosis (RRMS) at 7T. Methods: A total of 30 RRMS subjects (age (mean ± standard deviation (SD)): 44.0 ± 11.3 years, 93% on disease-modifying treatment) and 15 controls underwent gadolinium-enhanced three-dimensional (3D) MP2RAGE (magnetization-prepared 2 rapid gradient-echo) and fluid-attenuated inversion recovery (FLAIR) MRI. LME, cortical lesions (CLs), thalamic lesions (TLs), and white matter (WM) lesions were expert-quantified. Wilcoxon rank-sum, two-sample t-tests, Spearman correlations, and regression models were employed. Results: Two-thirds (20/30) of MS subjects and 1/15 controls (6.7%) had LME. LME+ MS subjects had 2.7 ± 1.5 foci, longer disease duration (14.9 ± 10.4 vs. 8.1 ± 5.7 years, p = 0.028), increased CL number (21.5 ± 12.6 vs. 5.5 ± 5.0, p < 0.001) and volume (0.80 ± 1.13 vs. 0.13 ± 0.13 mL, p = 0.002), and increased TL number (3.95 ± 2.11 vs. 0.70 ± 1.34, p < 0.001) and volume (0.106 ± 0.09 vs. 0.007 ± 0.01 mL, p < 0.001) versus LME– subjects. LME focus number correlated more highly with CL ( rs = 0.50, p = 0.01) and TL ( rs = 0.81, p < 0.001) than WM lesion ( rs = 0.34, p > 0.05) volume. Similar LME–CL number associations were observed in unadjusted and WM lesion–adjusted comparisons (both p < 0.001). Conclusion: Cerebral LME is common in RRMS at 7T and is independently associated with GM injury. We hypothesize that cerebrospinal fluid (CSF)-related inflammation links cortical and thalamic injury.


2002 ◽  
Vol 8 (5) ◽  
pp. 420-429 ◽  
Author(s):  
R Leigh ◽  
J Ostuni ◽  
D Pham ◽  
A Goldszal ◽  
B K Lewis ◽  
...  

Purpose: The purpose of this study was to determine how measures reflecting cerebral atrophy (CA) are influenced by pulse sequence (PS) and segmentation algorithm (SA) used in multiple sclerosis (MS) patients and healthy control (HC)s. Methods: Magnetic resonance imaging (MRI) scans from 10 relapsing-remitting MS (RRMS) patients and five HCs were used to determine the change in brain fractional volume (BFV) over a two-year period. T1-weighted, fluid-attenuated inversion recovery (FLAIR), and proton density (PD)/T2-weighted sequences were analysed. Image segmentation to determine brain volume was performed using the following: a histogram SA, an adaptive fuzzy c-means algorithm (AFCM), and an adaptive Bayesian segmentation with a K-means clustering. Results: Combinations of the SA and PS in MS patients demonstrated significant differences in the per cent change in BFV from baseline. For the combination of PS and SA the per cent change in BFV for year one and year two varied from +2.05% to −1.6% and +0.79% to −3.11%, respectively. Analysis of the HCs data revealed fluctuations in BFV varying from +0.26% to −0.29%. Conclusions: MRI estimates of CA are dependent on both the type of PS and SA; therefore, the choice of SA technique and PS should be consistent during an MS treatment trial. The progression of CA in MS should only be used as a secondary or tertiary outcome measure in treatment trials until a better understanding of how this measurement is affected by the disease, the image acquisition and analysis techniques.


2017 ◽  
Vol 24 (11) ◽  
pp. 1433-1444 ◽  
Author(s):  
Céline Louapre ◽  
Sindhuja T Govindarajan ◽  
Costanza Giannì ◽  
Nancy Madigan ◽  
Jacob A Sloane ◽  
...  

Background: Thalamic degeneration impacts multiple sclerosis (MS) prognosis. Objective: To investigate heterogeneous thalamic pathology, its correlation with white matter (WM), cortical lesions and thickness, and as function of distance from cerebrospinal fluid (CSF). Methods: In 41 MS subjects and 17 controls, using 3 and 7 T imaging, we tested for (1) differences in thalamic volume and quantitative T2* (q-T2*) (2) globally and (3) within concentric bands originating from the CSF/thalamus interface; (4) the relation between thalamic, cortical, and WM metrics; and (5) the contribution of magnetic resonance imaging (MRI) metrics to clinical scores. We also assessed MS thalamic lesion distribution as a function of distance from CSF. Results: Thalamic lesions were mainly located next to the ventricles. Thalamic volume was decreased in MS versus controls ( p < 10−2); global q-T2* was longer in secondary progressive multiple sclerosis (SPMS) only ( p < 10−2), indicating myelin and/or iron loss. Thalamic atrophy and longer q-T2* correlated with WM lesion volume ( p < 0.01). In relapsing-remitting MS, q-T2* thalamic abnormalities were located next to the WM ( p < 0.01 (uncorrected), p = 0.09 (corrected)), while they were homogeneously distributed in SPMS. Cortical MRI metrics were the strongest predictors of clinical outcome. Conclusion: Heterogeneous pathological processes affect the thalamus in MS. While focal lesions are likely mainly driven by CSF-mediated factors, overall thalamic degeneration develops in association with WM lesions.


2017 ◽  
Vol 23 (14) ◽  
pp. 1864-1874 ◽  
Author(s):  
Emanuele Pravatà ◽  
Maria A Rocca ◽  
Paola Valsasina ◽  
Gianna C Riccitelli ◽  
Claudio Gobbi ◽  
...  

Background: Cognitive impairment and depression frequently affects patients with multiple sclerosis (MS). However, the relationship between the occurrence of depression and cognitive impairment and the development of cortical atrophy has not been fully elucidated yet. Objectives: To investigate the association of cortical and deep gray matter (GM) volume with depression and cognitive impairment in MS. Methods: Three-dimensional (3D) T1-weighted scans were obtained from 126 MS patients and 59 matched healthy controls. Cognitive impairment was assessed using the Brief Repeatable Battery of Neuropsychological Tests and depression with the Montgomery-Asberg Depression Rating Scale (MADRS). Using FreeSurfer and FIRST software, we assessed cortical thickness (CTh) and deep GM volumetry. Magnetic resonance imaging (MRI) variables explaining depression and cognitive impairment were investigated using factorial and classification analysis. Multivariate regression models correlated GM abnormalities with symptoms severity. Results: Compared with controls, MS patients exhibited widespread bilateral cortical thinning involving all brain lobes. Depressed MS showed selective CTh decrease in fronto-temporal regions, whereas cognitive impairment MS exhibited widespread fronto-parietal cortical and subcortical GM atrophy. Frontal cortical thinning was the best predictor of depression ( C-statistic = 0.7), whereas thinning of the right precuneus and high T2 lesion volume best predicted cognitive impairment ( C-statistic = 0.8). MADRS severity correlated with right entorhinal cortex thinning, whereas cognitive impairment severity correlated with left entorhinal and thalamus atrophy. Conclusion: MS-related depression is linked to circumscribed CTh changes in areas deputed to emotional behavior, whereas cognitive impairment is correlated with cortical and subcortical GM atrophy of circuits involved in cognition.


2018 ◽  
Vol 25 (5) ◽  
pp. 715-726 ◽  
Author(s):  
Quinten van Geest ◽  
Rosa E Boeschoten ◽  
Matthijs J Keijzer ◽  
Martijn D Steenwijk ◽  
Petra JW Pouwels ◽  
...  

Background: The biological mechanism of depression in multiple sclerosis (MS) is not well understood. Based on work in major depressive disorder, fronto-limbic disconnection might be important. Objective: To investigate structural and functional fronto-limbic changes in depressed MS (DMS) and non-depressed MS (nDMS) patients. Methods: In this retrospective study, 22 moderate-to-severe DMS patients (disease duration 8.2 ± 7.7 years), 21 nDMS patients (disease duration 15.3 ± 8.3 years), and 12 healthy controls underwent neuropsychological testing and magnetic resonance imaging (MRI; 1.5 T). Brain volumes (white matter (WM), gray matter, amygdala, hippocampus, thalamus), lesion load, fractional anisotropy (FA) of fronto-limbic tracts, and resting-state functional connectivity (FC) between limbic and frontal areas were measured and compared between groups. Regression analysis was performed to relate MRI measures to the severity of depression. Results: Compared to nDMS patients, DMS patients (shorter disease duration) had lower WM volume ( p < 0.01), decreased FA of the uncinate fasciculus ( p < 0.05), and lower FC between the amygdala and frontal regions ( p < 0.05). Disease duration, FA of the uncinate fasciculus, and FC of the amygdala could explain 48% of variance in the severity of depression. No differences in cognition were found. Conclusion: DMS patients showed more pronounced (MS) damage, that is, structural and functional changes in temporo-frontal regions, compared to nDMS patients, suggestive of fronto-limbic disconnection.


2007 ◽  
Vol 48 (7) ◽  
pp. 755-762 ◽  
Author(s):  
A. Aalto ◽  
J. Sjöwall ◽  
L. Davidsson ◽  
P. Forsberg ◽  
Ö. Smedby

Background: Borrelia infections, especially chronic neuroborreliosis (NB), may cause considerable diagnostic problems. This diagnosis is based on symptoms and findings in the cerebrospinal fluid but is not always conclusive. Purpose: To evaluate brain magnetic resonance imaging (MRI) in chronic NB, to compare the findings with healthy controls, and to correlate MRI findings with disease duration. Material and Methods: Sixteen well-characterized patients with chronic NB and 16 matched controls were examined in a 1.5T scanner with a standard head coil. T1- (with and without gadolinium), T2-, and diffusion-weighted imaging plus fluid-attenuated inversion recovery (FLAIR) imaging were used. Results: White matter lesions and lesions in the basal ganglia were seen in 12 patients and 10 controls (no significant difference). Subependymal lesions were detected in patients down to the age of 25 and in the controls down to the age of 43. The number of lesions was correlated to age both in patients (ρ = 0.83, P<0.01) and in controls (ρ = 0.61, P<0.05), but not to the duration of disease. Most lesions were detected with FLAIR, but many also with T2-weighted imaging. Conclusion: A number of MRI findings were detected in patients with chronic NB, although the findings were unspecific when compared with matched controls and did not correlate with disease duration. However, subependymal lesions may constitute a potential finding in chronic NB.


2013 ◽  
Vol 20 (2) ◽  
pp. 214-219 ◽  
Author(s):  
Antonio Giorgio ◽  
Maria Laura Stromillo ◽  
Maria Letizia Bartolozzi ◽  
Francesca Rossi ◽  
Marco Battaglini ◽  
...  

Background: The accrual of brain focal pathology is considered a good substrate of disability in relapsing–remitting multiple sclerosis (RRMS). However, knowledge on long-term lesion evolution and its relationship with disability progression is poor. Objective: The objective of this paper is to evaluate in RRMS the long-term clinical relevance of brain lesion evolution. Methods: In 58 RRMS patients we acquired, using the same scanner and protocol, brain magnetic resonance imaging (MRI) at baseline and 10±0.5 years later. MRI data were correlated with disability changes as measured by the Expanded Disability Status Scale (EDSS). Results: The annualized 10-year lesion volume (LV) growth was +0.25±0.5 cm3 (+6.7±8.7%) for T2-weighted (T2-W) lesions and +0.20±0.31 cm3 (+11.5±12.3%) for T1-weighted (T1-W) lesions. The univariate analysis showed moderate correlations between baseline MRI measures and EDSS at 10 years ( p < 0.001). Also, 10-year EDSS worsening correlated with LV growth and the number of new/enlarging lesions measured over the same period ( p < 0.005). In the stepwise multiple regression analysis, EDSS worsening over 10 years was best correlated with the combination of baseline T1-W lesion count and increasing T1-W LV ( R = 0.61, p < 0.001). Conclusion: In RRMS patients, long-term brain lesion accrual is associated with worsening in clinical disability. This is particularly true for hypointense, destructive lesions.


2017 ◽  
Vol 24 (7) ◽  
pp. 942-950 ◽  
Author(s):  
Kyle Smoot ◽  
Kateri J Spinelli ◽  
Tamela Stuchiner ◽  
Lindsay Lucas ◽  
Chiayi Chen ◽  
...  

Background: Following approval of dimethyl fumarate (DMF), we established a registry of relapsing multiple sclerosis (RMS) patients taking DMF at our community MS center. Objective: To track DMF patients’ tolerability, disease progression, and lymphopenia. Methods: Patients prescribed DMF for RMS from March 2013 to March 2016 were prospectively enrolled ( N = 412). Baseline data, clinical relapses, magnetic resonance imaging (MRI) activity, discontinuation, and lymphocyte counts were captured through chart review. Results: The mean age of patients starting DMF was 49.4 ± 12.0 years and 70% transitioned from a previous disease-modifying therapy (DMT). Of the patients, 38% discontinued DMF, 76% of whom discontinued due to side effects. Clinical relapse and MRI activity were low. Comparing patients who transitioned from interferon-β (IFN), glatiramer acetate (GA), or natalizumab (NTZ), patients previously on NTZ had higher rates of relapse than those previously on GA (annualized relapse rate p = 0.039, percent relapse p = 0.021). Grade III lymphopenia developed in 11% of patients. Lymphopenia was associated with older age ( p < 0.001) and longer disease duration ( p < 0.001). Conclusion: Given the high rates of lymphopenia and discontinuation, it has become our clinical practice to more closely scrutinize older patients and those with a longer disease duration who are potential candidates for initiating DMF therapy.


Sign in / Sign up

Export Citation Format

Share Document