Investigation of modal damping ratios for stay cables based on stochastic subspace identification with ambient vibration measurements

2019 ◽  
Vol 22 (16) ◽  
pp. 3444-3460 ◽  
Author(s):  
Chien-Chou Chen ◽  
Wen-Hwa Wu ◽  
Szu-Ting Yu ◽  
Gwolong Lai

The stability assessment of stay cables based on the damping ratios of lower cable modes has attracted a large amount of research efforts. An accurate determination of those modal damping ratios is consequently required for the analysis or health monitoring of cable-stayed bridges. The aim of this study was to explore the challenge in accurately identifying the modal damping ratios of stay cable. The ambient vibration measurements collected from the stay cables of four cable-stayed bridges are investigated to cover different characteristics. A recently developed methodology based on stochastic subspace identification is adopted to determine the modal damping ratios of the cable. With the identified modal damping ratios for the stay cables of four bridges, comparison is made to examine the range of cable damping in different cable-stayed bridges and discuss the effects of several influence factors. It is found that the modal damping ratios for the stay cables of investigated bridges typically fall between 0% and 0.7%, close to the range from 0.05% to 0.5% reported by Post-Tensioning Institute. Moreover, it is also discovered that the modal damping ratio of the cable would decrease with increasing cable length if the energy dissipation mechanism of the cable principally comes from the anchorage device. In the cases where the middle free length section of the cable is filled with effective grouting materials, the modal damping ratio of the cable is not necessarily correlated with the cable length. Finally, the obtained results also indicate that the grouting material filled in the middle free length section of the cable defines the primary contribution to energy dissipation ranked by a descending order of ceresine wax, flexible polymer-modified cement and polyurethane foam.

2011 ◽  
Vol 18 (1-2) ◽  
pp. 221-244 ◽  
Author(s):  
Zheng Ling ◽  
Xie Ronglu ◽  
Wang Yi ◽  
Adel El-Sabbagh

Damping treatments have been extensively used as a powerful means to damp out structural resonant vibrations. Usually, damping materials are fully covered on the surface of plates. The drawbacks of this conventional treatment are also obvious due to an added mass and excess material consumption. Therefore, it is not always economical and effective from an optimization design view. In this paper, a topology optimization approach is presented to maximize the modal damping ratio of the plate with constrained layer damping treatment. The governing equation of motion of the plate is derived on the basis of energy approach. A finite element model to describe dynamic performances of the plate is developed and used along with an optimization algorithm in order to determine the optimal topologies of constrained layer damping layout on the plate. The damping of visco-elastic layer is modeled by the complex modulus formula. Considering the vibration and energy dissipation mode of the plate with constrained layer damping treatment, damping material density and volume factor are considered as design variable and constraint respectively. Meantime, the modal damping ratio of the plate is assigned as the objective function in the topology optimization approach. The sensitivity of modal damping ratio to design variable is further derived and Method of Moving Asymptote (MMA) is adopted to search the optimized topologies of constrained layer damping layout on the plate. Numerical examples are used to demonstrate the effectiveness of the proposed topology optimization approach. The results show that vibration energy dissipation of the plates can be enhanced by the optimal constrained layer damping layout. This optimal technology can be further extended to vibration attenuation of sandwich cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles as an invaluable design tool.


2012 ◽  
Vol 538-541 ◽  
pp. 1800-1803
Author(s):  
Hui Ping Wang

Stay cables of long span cable-stayed bridges are easy to vibrate under wind or wind/rain loads owning to their very low inherent damping. To install cable dampers near to the anchorages of cable has become a common practice for cable vibration control of cable-stayed bridge structures. In this study, the behaviors of a nonlinear frictional type of damper were investigated. The equations of motion of a cable with a friction damper were derived by using a lumped mass model. Then by introducing modal transformation, the analytical solution for the motion equations was obtained. The results show that the friction damper evokes linearly decaying of free vibrations of the cable as long as the damper does not lock the cable. The modal damping ratio of cable with the friction damper is strongly amplitude dependent. Calculation of modal damping ratio can be simplified using control parameter and the maximum modal damping ratio can be obtained. A universal estimation curve is proposed that is similar to linear viscous damper. These studies could provide design basis for the vibration mitigation of stay cables using nonlinear friction.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
E. Mrabet ◽  
M. Abdelghani ◽  
N. Ben Kahla

The modal parameters of a structure that is estimated from ambient vibration measurements are always subject to bias and variance errors. Accordingly the concept of the stabilization diagram is introduced to help users identify the correct model. One of the most important problems using this diagram is the appearance of spurious modes that should be discriminated to simplify modes selections. This study presents a new stabilization criterion obtained through a novel numerical implementation of the stabilization diagram and the discussion of model validation employing the power spectral density. As an application, an aircraft skeleton is used.


2016 ◽  
Vol 59 ◽  
pp. 138-146 ◽  
Author(s):  
Da Tang ◽  
Ran Ju ◽  
Qianjin Yue ◽  
Shisheng Wang

1998 ◽  
Vol 5 (5-6) ◽  
pp. 337-341
Author(s):  
F. Pourroy ◽  
S. Shakhesi ◽  
P. Trompette

In dynamics, the effect of varying the constitutive materials’ thickness of a two-layered beam is investigated. Resonance frequencies and damping variations are determined. It is shown that for specific thicknesses the coupling of longitudinal and flexural vibrations influences the global modal damping ratio significantly.


2013 ◽  
Vol 437 ◽  
pp. 257-260
Author(s):  
Li Zhang ◽  
Guang Yuan Nie

By using ODS (Operating Deflection Shapes) technology, the modal parameters of the rack of a batching system mixer under operating condition are identified and the modal shape and modal damping ratio of the rack in a few working frequencies are obtained. The results show that, the batching machine rack on working condition has a significant effect on some frequency and the work principal modes that appear as before and after exercise of two beams above the rack and swaying motion of the brackets of the two side surface. This paper provides a valuable reference for the structure vibration optimization of batching system mixer.


2012 ◽  
Vol 238 ◽  
pp. 648-651
Author(s):  
Zhi Hao Wang

The classical outrigger in frame-core tube structure cantilevering from the core tube or shear wall connected to the perimeter columns directly, which can effectively improve the lateral stiffness of the structure. A new energy-dissipation system for such structural system is studied, where the outrigger and perimeter columns are separate and vertical viscous dampers are equipped between the outrigger and perimeter columns to make full use of the relative big displacement of two components. The effectiveness of proposed system is evaluated by means of the modal damping ratio based on the proposed simplified model. The mathematic models of the structural system are obtained with both the assumed mode shape method and finite element method according to the simplified calculation diagram. Based on the modal damping ratio, the optimal damping coefficients of linear viscous dampers are determined, and effectiveness of proposed system is confirmed.


Sign in / Sign up

Export Citation Format

Share Document