Experimental study on mechanical behavior of orthotropic steel deck with adhesively bonded rigid pavement

2022 ◽  
pp. 136943322110646
Author(s):  
Xinyi HE ◽  
Qingtian SU ◽  
Xu JIANG ◽  
Chong WU

The steel deck with rigid pavement has a lower risk of fatigue failure owing to the enhanced local rigidity. A reliable connection of steel plate and pavement and a convenient construction are critical concerns for this deck type. To seek a new application meeting the aforementioned requirements, this paper proposed a steel deck with adhesively bonded rigid pavement cast by non-reinforced ultra-high performance concrete (UHPC). To study the constructability and flexural properties of this deck type in a bridge deck system, four specimens including two with adhesively bonded connection and two reference ones with shear stud connection were fabricated and experimentally investigated by positive and negative bending tests. In addition, a simplified pretreatment of steel substrate was conducted before the application of epoxy resin to simulate the low quality of on-site construction. Experimental results indicate that the shear strength of the bonding connection with simplified steel pretreatment could decrease to half of that with strict preparation. Bending tests demonstrate that the adhesive bonding provides a more rigid connection between steel and concrete than shear studs did. The bonding failure load was 1.5 times the U-rib yielding load, indicating a high positive bending-carrying capacity of the deck. The adhesive provides better crack resistance than shear studs in negative bending. From a perspective on the bending behavior in the deck system, the adhesive bonding was reliable to obtain high bending capacities to resist actual vehicle loads. Besides, the non-uniform shrinkage of non-reinforced UHPC pavement can cause a 30% reduction of cracking strength.

Author(s):  
C. Xu ◽  
B. Y. Zhang ◽  
Z. H. Hou

<p>The application of high performance concrete has been increasingly concerned in the negative flexural region of steel‐concrete continuous composite girder because of its favorable tensile performance. However, the unclear cyclic and ultimate performance of a high performance concrete composite girder results to the problems which hinder the further application. In this case, a series of fatigue negative bending tests on HPC composite girders and fatigue push‐out tests on stud connectors in HPC were executed. The test results showed that the fatigue slip in the HPC composite girder was smaller than the normal concrete composite girder, and the fatigue life of stud in HPC was longer than the one in normal concrete. Meanwhile, according to the comparison between the stud fatigue live evaluations and test results, the AASHTO‐based evaluations were comparatively with larger safety redundancy, and JSCE was close to the test results but had smaller safety redundancy.</p>


2020 ◽  
Vol 10 (4) ◽  
pp. 1335 ◽  
Author(s):  
Shuwen Deng ◽  
Xudong Shao ◽  
Banfu Yan ◽  
Yan Wang ◽  
Huihui Li

Joints are always the focus of the precast structure for accelerated bridge construction. In this paper, a girder-to-girder joint suitable for steel-ultra-high-performance concrete (UHPC) lightweight composite bridge (LWCB) is proposed. Two flexural tests were conducted to verify the effectiveness of the proposed T-shaped girder-to-girder joint. The test results indicated that: (1) The T-shaped joint has a better cracking resistance than the traditional I-shaped joint; (2) The weak interfaces of the T-shaped joint are set in the areas with relatively lower negative bending moment, and thus the cracking risk could be decreased drastically; (3) The natural curing scheme for the joint is feasible, and the reinforcement has a very large inhibitory effect on the UHPC material shrinkage; The joint interface is the weak region of the LWCB, which requires careful consideration in future designs. Based on the experimental test results, the design and calculation methods for the deflection, crack width, and ultimate flexural capacity in the negative moment region of LWCB were presented.


2009 ◽  
Vol 6 (9) ◽  
pp. 101990 ◽  
Author(s):  
R. Krelaus ◽  
G. Wisner ◽  
S. Freisinger-Schadow ◽  
M. Schmidt ◽  
S. Böhm ◽  
...  

2010 ◽  
Vol 163-167 ◽  
pp. 3511-3516 ◽  
Author(s):  
Yan Ling Zhang ◽  
Yun Gang Zhang ◽  
Yun Sheng Li

In this paper, the stress distribution of the orthotropic steel bridge deck in a suspend bridge under local wheel load is analyzed. Some retrofitted methods are introduced, two of which are studied. One is using the concrete paving layer (CPL), and the other is using the sandwich plate system (SPS) to strengthen the orthotropic steel bridge deck. Local finite element models are established by ANSYS; stress distribution of bridge deck is calculated under the designed vehicle load before and after the deck retrofitted by the CPL or the SPS, and the results are compared with each other. The analysis results indicate that, under wheel pressure load, the orthotropic steel deck appears stress concentration; after the deck was retrofitted no matter by the CPL or the SPS, all the stress peaks decrease obviously, and the fatigue resistance of the orthotropic steel deck increases, which indicate that the two methods are effective to retrofit the orthotropic steel bridge deck. Using the CPL method can lead to lower stress concentration than that of using the SPS method, but the concrete paving layer is easy to crack, so, high performance concrete with high tension strength is needed.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2953 ◽  
Author(s):  
Banfu Yan ◽  
Qiqi Zou ◽  
You Dong ◽  
Xudong Shao

A lightweight composite bridge deck system composed of steel orthotropic deck stiffened with thin Ultra-High Performance Concrete (UHPC) layer has been proposed to eliminate fatigue cracks in orthotropic steel decks. The debonding between steel deck and UHPC layer may be introduced during construction and operation phases, which could cause adverse consequences, such as crack-induced water invasion and distinct reduction of the shear resistance. The piezoelectric lead zirconate titanate (PZT)-based technologies are used to detect interfacial debonding defects between the steel deck and the UHPC layer. Both impedance analysis and wave propagation method are employed to extract debonding features of the steel-UHPC composite slab with debonding defect in different sizes and thicknesses. Experimental tests are performed on two steel-UHPC composite slabs and a conventional steel-concrete composite deck. Additionally, an improved Particle Swarm Optimization (PSO)-k-means clustering algorithm is adopted to obtain debonding patterns based on the feature data set. The laboratory tests demonstrate that the proposed approach provides an effective way to detect interfacial debonding of steel-UHPC composite deck.


2021 ◽  
Author(s):  
MONISH URAPAKAM RAMAKRISHNAN ◽  
PANKAJ K. MALLICK

Tubular members are used in the automotive industry for body, chassis, and powertrain components such as front rails, underbody frames or sub frames, driveshaft structures and space frames. They are also extensively used in buses and other heavy vehicle structures. With focus on light-weighting, there is increasing use of multimaterial structures with aluminum and high-performance composites. Joining a variety of materials with different characteristics and compositions is a major challenge for the design of such structures. Hence, adhesive bonding is emerging as one of the key joining technique for multi-material structures due to their compatibility with commonly used lightweight materials. Since tubular joints in automotive structures may experience crush type load, this study considers the crush characteristics of composite-aluminum tubular adhesive joints using finite element analysis.


Materials ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 253 ◽  
Author(s):  
Li Su ◽  
Shilei Wang ◽  
Yan Gao ◽  
Jianlei Liu ◽  
Xudong Shao

A novel ultra high performance concrete (UHPC) layer composite orthotropic steel deck was adopted in the construction of a new bridge in China to improve the fatigue performance of the orthotropic steel deck plate and reduce the disease of surface wearing layer. In situ experiments were conducted to study the UHPC layer’s impact on the behavior of the orthotropic steel deck. The test vehicle loads were applied on the deck plate before and after UHPC layer paving, the stresses where fatigue cracks usually occur and the deflections of critical sections were measured. The test results verified that the UHPC composite steel deck system could significantly reduce the stress of the rib-to-deck connection region and the stress at the bottom toe of rib-to-diaphragm weld. In addition, it slightly influenced the performance of U shape rib, girder web-to-deck and diaphragm cutout.


2021 ◽  
Author(s):  
Faheem Abdul

Many research works have been conducted on the behavior of composite slabs with profiled steel deck to study the longitudinal shear bond resistance using the m-k method. In this study, experimental investigations are conducted to evaluate the shear bond characeristics of composite slabs. 15 composite slabs are tested to study the effect of different high performance concrete (HPC) mixes namely engineered cementitious composites (ECC) and self-consolidating concrete (SCC), diverse profile sheets (with embossments or without embossments) and variable shear span on load-deflection characteristics, stress-strain development in concrete/steel, cracking/crack propagation and failure modes. The values of shear bond parameters (m and k) derived from the test results can be used for the design of composite slabs.


Sign in / Sign up

Export Citation Format

Share Document